Trigonometri: Cara Sederhana Menerangkan Rumus Jumlah Dan Selisih Dua Sudut
Untuk anak-anak SMA yang masuk kelompok IPA, trigoometri yaitu topik paling digemari, alasannya yaitu yaitu topik trigonometri selalu ikutan nimbrung pada setiap tingkatan kelas. Misalnya pada kelas X ada perbandingan, fungsi, persamaan, dan identitas trigonometri. Di kelas XI ada rumus sinus dan kosinus jumlah dua sudut, selisih dua sudut, dan juga disinggung pada topik turunan yaitu turunan trigonometri. Sedangkan di kelas XII trigonometri ketemu saat menghitung integral tak tentu dan integral tentu dari fungsi trigonometri.
Sekarang yang kita diskusikan yaitu trigonometri pada kelas XI yaitu rumus sinus dan kosinus jumlah dua sudut dan selisih dua sudut. Sebelum memasuki topik ini para siswa diperlukan sudah mengenal atau sudah memahami Trigonometri dasar pada kelas X.
Salah satu tujuan pembelajaran ini yaitu para siswa mampu menghitung $ sin 75^{\circ} $, $ sin 15^{\circ} $, $ cos 75^{\circ} $ atau $ tan 15^{\circ} $
Trigonometri dasar yang sudah dikenal anak-anak, maka rumus sinus dan kosinus jumlah dua sudut dan selisih dua sudut bersama-sama mampu langsung digunakan. Karena rumus jumlah atau selisih dua sudut ini termasuk rumus yang sederhana, kita hanya menggantikan nilai-nilai yang ada pada rumus kepada nilai yang dinginkan.
Rumus jumlah dan selisih dua sudut pada trigonometri adalah;
- $ sin\left ( A+B \right )=sinA \cdot cosB+sinB \cdot cosA $
- $ sin\left ( A-B \right )=sinA \cdot cosB-sinB \cdot cosA $
- $ cos\left ( A+B \right )=cosA \cdot cosB-sinA \cdot sinB $
- $ cos\left ( A-B \right )=cosA \cdot cosB+sinA \cdot sinA $
- $ tan\left ( A+B \right )=\dfrac{tanA+tanB}{1-tanA\cdot tanB} $
- $ tan\left ( A-B \right )=\dfrac{tanA-tanB}{1+tanA\cdot tanB} $
Salah satu bentuk yang cocok adalah:
$ sin\left ( A+B \right )=sinA \cdot cosB+sinB \cdot cosA $
$ sin 75^{\circ}=sin\left ( 45^{\circ}+30^{\circ} \right ) $
$ sin 75^{\circ}=sin45^{\circ} \cdot cos30^{\circ}+sin30^{\circ} \cdot cos45^{\circ} $
$ sin 75^{\circ}=\dfrac{1}{2}\sqrt{2} \cdot \dfrac{1}{2}\sqrt{3}+\dfrac{1}{2} \cdot \dfrac{1}{2}\sqrt{2} $
$ sin 75^{\circ}=\dfrac{1}{4}\sqrt{6} + \dfrac{1}{4}\sqrt{2} $
Dengan sedikit kreativitas kita juga mampu memakai rumus-rumus diatas untuk menerima identitas trigonometri untuk sudut rangkap misalnya $ sin\left ( 2A \right )$, $ cos\left ( 2A \right )$ atau $ tan\left ( 2A \right )$.
Kita pilih untuk menerima identitas trigometri $ cos\left ( 2A \right )$ yang cocok yaitu bentuk $ cos\left ( A+B \right )=cosA \cdot cosB-sinA \cdot sinB $
$ cos\left ( 2A \right )= cos\left ( A+A \right ) $
$ cos\left ( 2A \right )=cosA \cdot cosA-sinA \cdot sinA $
$ cos\left ( 2A \right )=cos^{2}A-sin^{2}A $
atau dengan pertolongan $ sin^{2}A+cos^{2}A=1 $ kita peroleh bentuk yang lain yaitu
$ cos\left ( 2A \right )=1-2sin^{2}A $ atau
$ cos\left ( 2A \right )=2cos^{2}A-1 $.
Untuk siswa problem kita buat lebih terbuka, misal dengan caramu sendiri coba buktikan rumus penjumlahan atau selisih sudut diatas.
Berikut pembuktian rumus penjumlahan atau selisih sudut hasil kreativitas Rinaldo Parluhutan Silaban dan Elstri Sihotang siswa kelas XI, dari dua orang berbeda tetapi idenya sama.
Dari sebuah segitiga ABC siku-siku di C, kita sebut pada titik A yaitu sudut A dan pada titik B yaitu sudut B, sisi AB yaitu sisi c, sisi BC yaitu sisi a dan sisi AC yaitu sisi b.
$ sinA= \dfrac{a}{c} =cosB $
$ cosA= \dfrac{b}{c} =sinB $
Pada segitiga ABC berlaku;
$ A+B+C=180^{\circ} $
$ A+B=90^{\circ} $
$ sin(A+B)=Sin90^{\circ} $
$ sin(A+B)=1 $
$ sin(A+B)=sin^{2}A+cos^{2}A $
$ sin(A+B)=sin A\cdot sin A+cos A\cdot cos A $
$ sin(A+B)=sin A\cdot cos B+sinB\cdot cos A $ (terbukti)
Dengan memakai rumus penjumlahan dua sudut diatas dan sedikit kreativitas kita mampu peroleh rumus untuk selisih dua sudut;
$ sin(A+\left (-B \right ))=sin A\cdot cos \left (-B \right )+sin\left (-B \right )\cdot cos A $
dengan menggunkan sifat sudut berelasi sewaktu kelas X kita peroleh $ sin\left ( -A \right )=-sin\left ( A \right ) $ dan $ cos\left ( -A \right )=cos\left ( A \right ) $
Sekarang kita peroleh;
$ sin\left (A-B \right )=sin A\cdot cos B-sin B\cdot cos A $ (terbukti)
Untuk $ cos\left ( A+B \right )=cosA \cdot cosB-sinA \cdot sinB $ yang kita tampilkan yaitu hasil kreativitas Heryanto Simatupang, berikut hasilnya;
Pada segitiga ABC berlaku;
$ A+B+C=180^{\circ} $
$ A+B=90^{\circ} $
$ cos(A+B)=cos90^{\circ} $
$ cos(A+B)=0 $
$ cos(A+B)=\dfrac{ab}{c^{2}}-\dfrac{ab}{c^{2}} $
$ cos(A+B)=\dfrac{a}{c}\cdot \dfrac{b}{c}-\dfrac{a}{c}\cdot \dfrac{b}{c} $
$ cos(A+B)=cos B\cdot cos A-sin A\cdot sin B $
$ cos(A+B)=cos A\cdot cos B-sin A\cdot sin B $ (terbukti)
Untuk selisih sudutnya mampu kita gunakan $ sin\left ( -A \right )=-sin\left ( A \right ) $ dan $ cos\left ( -A \right )=cos\left ( A \right ) $
$ cos(A+\left (-B \right )=cos A\cdot cos \left (-B \right )-sin A\cdot sin \left (-B \right ) $
$ cos(A-B)=cos A\cdot cos B+sin A\cdot sin B $
Untuk perbandingan trigonometri jumlah dan selisih sudut pada tangen, kita coba memakai identitas trigonometri yaitu $tan\ A=\dfrac{sin\ A}{cos\ A}$.
$tan\ (A+B)=\dfrac{sin\ (A+B)}{cos\ (A+B)}$
$tan\ (A+B)=\dfrac{sin A\cdot cos B+sinB\cdot cos A}{cos A\cdot cos B-sin A\cdot sin B}$
$tan\ (A+B)=\dfrac{sin A\cdot cos B+sinB\cdot cos A}{cos A\cdot cos B-sin A\cdot sin B} \cdot \dfrac{\dfrac{1}{cos A\cdot cos B}}{\dfrac{1}{cos A\cdot cos B}} $
$tan\ (A+B)=\dfrac{\dfrac{sin A\cdot cos B}{cos A \cdot cos B}+\dfrac{sinB\cdot cos A}{cos A \cdot cos B}}{\dfrac{cos A\cdot cos B}{cos A \cdot cos B}-\dfrac{sin A\cdot sin B}{cos A \cdot cos B}} $
$tan\ (A+B)=\dfrac{\dfrac{sin A}{cos A}+\dfrac{sinB}{cos B}}{1-\dfrac{sin A}{cos A} \cdot \dfrac{sin B}{cos B}}$
$tan\ (A+B)=\dfrac{tanA+tanB}{1-tan A \cdot tanB}$
Dengan cara yang hampir sama, kita mampu mendapatkan:
$tan\ (A-B)=\dfrac{tanA-tanB}{1+tan A \cdot tanB}$
Anda punya cara yang berbeda, mari berbagi😊 dan belajar😊
Video pilihan khusus untuk Anda 😊 Bagaimana perkalian dikerjakan dengan cara nakal;
Belum ada Komentar untuk "Trigonometri: Cara Sederhana Menerangkan Rumus Jumlah Dan Selisih Dua Sudut"
Posting Komentar