Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)Ini ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum 2013, mungkin kita mampu diskusikan, alasannya yakni ialah di sekolah mungkin tidak semua nanti soal ini akan dibahas,... kata Tika kepada Mat.

Baiklah, mana coba kita baca bersama bukunya..., balas Mat, ...lalu Tika coba buka buku SMA Kelas XII Kurikulum 2013 Halaman 25.

Soal Nomor 1:

Perhatikan gambar berikut:
ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
a. Dari Gambar $(a)$, tentukan jarak dari titik $A$ ke $D$.
b. Dari Gambar $(b)$, tentukan jarak titik $P$ terhadap garis $g$.
c. Dari Gambar $(c)$, tentukan jarak titik $P$ pada bidang-$K$.
Alternatif Pembahasan:

Kalau melihat soal nomor 1 ini sepertinya kita diajak untuk memahami konsep jarak itu, yaitu Jika AB ialah yang terpendek antara semua ruas garis penghubung titik-titik itu, maka panjang ruas garis AB disebut jarak.

  • $(a)$, jarak dari titik $A$ ke $D$ ialah panjang $AD$ yaitu $AC+CD=$$17\ m +29\ m=46\ m$
  • $(b)$, jarak titik $P$ terhadap garis $g$ ialah panjang $PP_{1}$ alasannya yakni ialah $P_{1}$ terletak pada garis $g$ dan $PP_{1}\ \perp g$.
  • $(c)$, jarak titik $P$ pada bidang-$K$ ialah $PP_{1}$ alasannya yakni ialah $P_{1}$ terletak pada garis $RP_{1}$ atau garis $QP_{1}$ dimana garis $RP_{1}$ atau garis $QP_{1}$ terletak pada bidang-$K$ dan $PP_{1} \perp QP_{1}$ atau $PP_{1} \perp RP_{1}$.

Soal Nomor 2:

Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $9\ cm$. Buat citra kubus tersebut. Tentukan langkah menentukan jarak titik $F$ ke bidang $BEG$. Kemudian hitunglah jarak titik $F$ ke bidang $BEG$.
Alternatif Pembahasan:

Pertama kita pastinya harus mampu menggambar kubus $ABCD.EFGH$ dan bidang $BEG$

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Langkah-langkah menentukan jarak titik $F$ ke bidang $BEG$, kurang lebih mampu kita lakukan ibarat berikut ini;
  • Pertama, kita tarik garis pada bidang $BEG$ misalkan kita sebut garis $BB'$.
  • Kedua, kita tarik garis dari $F$ sehingga tegak lurus pada garis $BB'$ misalkan kita sebut garis $FF'$.
  • Ketiga, alasannya yakni ialah $FF' \perp BB'$ maka jarak titik $F$ ke bidang $BEG$ ialah panjang $FF'$.
ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Untuk menghitung jarak titik $F$ ke bidang $BEG$ yaitu panjang $FF'$, kita membutuhkan beberapa data tambahan, antara lain;
Karena $\triangle BEG$ ialah samakaki maka $BB' \perp EG$ dan $B'$ ialah titik tengah $EG$,
sehingga berlaku $BB'=\sqrt{BG^{2}-B'G^{2}}$
$BB'=\sqrt{(9\sqrt{2})^{2}-(\frac{9}{2}\sqrt{2})^{2}}$
$BB'=\sqrt{162-\frac{81}{2}}$
$BB'=\sqrt{\frac{324}{2}-\frac{81}{2}}$
$BB'=\sqrt{\frac{243}{2}}$
$BB'=\frac{9}{2}\sqrt{6}$

Coba perhatikan $\triangle BFB'$ ialah segitiga siku-siku di $F$, sehingga kita mampu menghitung luasnya denga cara;
$[BFB']=\frac{1}{2} \times BF \times FB'$
$[BFB']=\frac{1}{2} \times 9 \times \frac{9}{2} \sqrt{2}$
$[BFB']=\frac{81}{4} \sqrt{2}$

Luas $\triangle BFB'$ mampu juga kita hitung luasnya dengan cara;
$[BFB]=\frac{1}{2} \times BB' \times FF'$
$[BFB]=\frac{1}{2} \times \frac{9}{2}\sqrt{6} \times FF'$
$\frac{81}{4}\sqrt{2}=\frac{1}{2} \times \frac{9}{2}\sqrt{6} \times FF'$
$\frac{81}{4}\sqrt{2}=\frac{9}{4}\sqrt{6} \times FF'$
$81\sqrt{2}=9\sqrt{6} \times FF'$
$9\sqrt{2}=\sqrt{6} \times FF'$
$FF'=\frac{9\sqrt{2}}{\sqrt{6}}$
$FF'=\frac{9}{\sqrt{3}}$
$FF'=3\sqrt{3}$

Jarak titik $F$ ke bidang $BEG$ ialah $3 \sqrt{3}$.

Sebagai catatan; jikalau panjang rusuk kubus di rubah panjangnya misal jadi $a$, maka jarak titik ke bidang dengan posisi sama ibarat soal diatas ialah $\frac{1}{3} a \sqrt{3}$. Penjelasannya silahkan simak di Pertanyaan Tentang Jarak Titik ke Bidang [Geometri] atau Alat Peraga Rangka Bangun Ruang Terbuat Dari Kertas.


Soal Nomor 3:

Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $a$. Jika titik $P$ terletak pada perpanjangan $AB$ sehingga $PB = 2a$, dan titik $Q$ pada perpanjangan $FG$ sehingga $QG = a$.
a. Buatlah citra dari problem di atas.
b. Tentukan $PQ$.
Alternatif Pembahasan:

Jika kita gambarkan citra dari problem diatas kurang lebih ibarat berikut ini;

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Untuk menghitung $PQ$ kita perlu beberapa garis bantu, antara lain;
Titik potong perpanjangan garis $EF$ dengan garis yang tegak lurus $AP$ di $P$ kita misalkan Titik $R$. Lalu jikalau kita hubungkan titik $P,\ Q, R$ maka akan kita peroleh segitiga $PQR$ yang siku-siku di $R$.
ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
$PQ=\sqrt{PR^{2}+QR^{2}}$
dimana $PR=a$ dan $QR=\sqrt{QF^{2}+FR^{2}}$
$QR=\sqrt{(2a)^{2}+(2a)^{2}}$
$QR=\sqrt{8a^{2}}$
$QR=2a\sqrt{2}$

$PQ=\sqrt{PR^{2}+QR^{2}}$
$PQ=\sqrt{a^{2}+(2a\sqrt{2})^{2}}$
$PQ=\sqrt{a^{2}+8a^{2}}$
$PQ=\sqrt{9a^{2}}$
$PQ=3a$

Soal Nomor 4:

Panjang setiap bidang empat beraturan $T.ABC$ sama dengan $16\ cm$. Jika $P$ pertengahan $AT$ dan $Q$ pertengahan $BC$, tentukan $PQ$.
Alternatif Pembahasan:

Jika kita coba ilustrasikan problem diatas, kurang lebih ibarat berikut ini;

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Titik $P$ dan $Q$ merupakan titik tengah $AT$ dan $BC$ pada bidang empat beraturan, sehingga kita peroleh $\triangle CPT$ yang siku-siku di $P$ sehingga berlaku;
$CP=\sqrt{CT^{2}-TP^{2}}$
$CP=\sqrt{16^{2}-8^{2}}$
$CP=\sqrt{256-64}$
$CP=\sqrt{192}$
$CP=8\sqrt{3}$

Pada $\triangle PQC$ yang siku-siku di $Q$, berlaku;
$PQ=\sqrt{CP^{2}-CQ^{2}}$
$PQ=\sqrt{(8\sqrt{3})^{2}-8^{2}}$
$PQ=\sqrt{192-64}$
$PQ=\sqrt{128}$
$PQ=8\sqrt{2}$

Soal Nomor 5:

Perhatikan gambar kubus $ABCD.EFGH$. Tentukan jarak titik $H$ ke $DF$.
ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Alternatif Pembahasan:

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Untuk menghitung jarak titik $H$ ke $DF$ kita perlu beberapa garis bantu, antara lain;
Kita tarik garis dari $H$ yang tegak lurus ke $DF$, misal kita sebut $HH'$.
Segitiga $HDF$ ialah segitiga siku-siku di $H$ sehingga:
$[HDF] =\frac{1}{2} \times HD \times HF$
$[HDF] =\frac{1}{2} \times 6 \times 6=18$

Luas segitiga $HDF$ mampu juga kita hitung dengan cara;
$[HDF] =\frac{1}{2} \times DF \times HH'$
$18 =\frac{1}{2} \times 6\sqrt{3} \times HH'$
$HH'=\frac{18}{3\sqrt{3}}$
$HH'=9\sqrt{2}$

Karena $HH'$ tegak lurus dengan $DF$ maka jarak titik $H$ ke $DF$ ialah $9\sqrt{2}$


Soal Nomor 6:

Dalam kubus $ABCD.EFGH$ titik $S$ ialah titik tengah sisi $CD$ dan $P$ ialah titik tengah diagonal ruang $BH$. Tentukan perbandingan volum limas $P.BCS$ dan volum kubus $ABCD.EFGH$.
Alternatif Pembahasan:

Untuk menghitung perbandingan volume kubus dengan limas, mungkin kita butuh citra kubus $ABCD.EFGH$ dan limas $P.BCS$ mampu kita gambarkan kurang lebih ibarat berikut ini;

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Karena pada soal panjang rusuk kubus tidak ditentukan, kita misalkan panjang rusuk kubus $AB=2a$.
Volume kubus ialah $V_{k}=(2a)^{3}=8a^3$

Volume Limas ialah $\frac{1}{3} \times \text{luas alas} \times \text{tinggi}$
$V_{l}=\frac{1}{3} \times [BCS] \times PP'$
$V_{l}=\frac{1}{3} \times \frac{1}{2} BC \times CS \times PP'$
$V_{l}=\frac{1}{3} \times \frac{1}{2} 2a \times a \times a$
$V_{l}=\frac{1}{3} a^{3}$

Perbandingan Volume Kubus dan Limas adalah:
$V_{k}:V_{l}=8a^3:\frac{1}{3} a^{3}$
$V_{k}:V_{l}=8:\frac{1}{3}$
$V_{k}:V_{l}=24:1$

Soal Nomor 7:

Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $a\ cm$. $S$ merupakan proyeksi titik $C$ pada bidang $AFH$.Tentukan jarak titik $A$ ke titik $S$.
Alternatif Pembahasan:

Jika kita ilustrasikan gambar diatas kurang lebih ibarat berikut ini;

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Titik $S$ ialah hasil proyeksi titik $C$ pada bidang $AFH$ sehingga $SC$ tegak lurus pada bidang $AFH$. Garis $AS$ terletak pada bidang $AFH$ maka $AS$ tegak lurus $SC$ secara simbol mampu kita tuliskan $AS \perp SC$.

Dari kumpulan berita diatas sekarang kita coba hitung panjang $AS$,
Coba perhatikan $\triangle ACE$ ialah segitiga siku-siku di $A$, sehingga kita mampu menghitung luasnya denga cara;
$[ACE]=\frac{1}{2} \times AC \times AE$
$[ACE]=\frac{1}{2} \times a\sqrt{2} \times a$
$[ACE]=\frac{1}{2} a^{2}\sqrt{2}$

Luas $\triangle ACE$ mampu juga kita hitung luasnya dengan cara;
$[ACE]=\frac{1}{2} \times CE \times AS$
$[ACE]=\frac{1}{2} \times a\sqrt{2} \times AS$
$a^{2}\sqrt{2}=\frac{1}{2} \times a\sqrt{2} \times AS$
$2a^{2}\sqrt{2}=a\sqrt{2} \times AS$
$AS=\frac{2a^{2}\sqrt{2}}{a\sqrt{2}}$
$AS=\frac{2a^{2}}{a}$
$AS=2a$

Soal Nomor 8:

Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $a\ cm$. $P$ dan $Q$ masing-masing merupakan titik tengah $AB$ dan $CD$, sedangkan $R$ merupakan titik potong $EG$ dan $FH$. Tentukan jarak titik $R$ ke bidang $EPQH$.
Alternatif Pembahasan:

Jika kita ilustrasikan gambar soal diatas kurang lebih ibarat berikut ini;

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Untuk menghitung jarak titik $R$ ke bidang $EPQH$ kita membutuhkan beberapa berita tambahan, antara lain;
Titik tengah $EH$ kita sebut $S$, dan titik tengah $PQ$ kita sebut $T$.
Titik $R$ kita proyeksikan ke bidang $EPQH$ dan alhasil terletak pada garis $ST$, kita sebut titik $R'$ sehingga $RR'$ tegak lurus dengan $ST$.
ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Karena $RR'$ tegak lurus dengan $ST$ dan $ST$ berada pada bidang $EPQH$ maka jarak titik $R$ ke $EPQH$ ialah $RR'$.

Sekarang kita coba menghitung $RR'$ dengan derma $\triangle TRS$
Coba perhatikan $\triangle TRS$ ialah segitiga siku-siku di $R$, sehingga kita mampu menghitung luasnya denga cara;
$[TRS]=\frac{1}{2} \times TR \times RS$
$[TRS]=\frac{1}{2} \times 2a \times a$
$[TRS]=a^{2}$

Luas $\triangle TRS$ mampu juga kita hitung luasnya dengan cara;
$[TRS]=\frac{1}{2} \times TS \times RR'$

$TS^{2}=TR^{2}+RS^{2}$
$TS^{2}=(2a)^{2}+a^{2}$
$TS^{2}=4a^{2}+a^{2}$
$TS^{2}=5a^{2}+$
$TS=a\sqrt{5}$

$[TRS]=\frac{1}{2} \times TS \times RR'$
$a^{2}=\frac{1}{2} \times a\sqrt{5} \times RR'$
$2a^{2}=a\sqrt{5} \times RR'$
$RR'=\frac{2a^{2}}{a\sqrt{5}}$
$RR'=\frac{2}{5}a\sqrt{5}$

Jarak titik $R$ ke bidang $EPQH$ ialah $\frac{2}{5}a\sqrt{5}$

Soal Nomor 9:

Diketahui kubus $ABCD.EFGH$ dengan rusuk $4\ cm$. $P$ titik tengah $EH$. Tentukan jarak titik $P$ ke garis $CF$.
Alternatif Pembahasan:

Jika kita ilustrasikan gambar soal diatas kurang lebih ibarat berikut ini;

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Untuk menghitung jarak titik $P$ ke garis $CF$, kita perlu beberapa berita tambahan, antara lain;
Titik $P$ kita proyeksikan ke garis $CF$, misal kita sebut titiknya ialah $P'$ sehingga $PP'$ tegak lurus $CF$, alasannya yakni ialah $PP' \perp CF$ maka jarak titik $P$ ke garis $CF$ ialah panjang $PP'$.
ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Sekarang kita coba menghitung $PP'$ dengan derma $\triangle PFC$
Coba perhatikan $\triangle PFC$ kita mampu menghitung luasnya denga cara Rumus Luas Segitiga Jika Diketahui Panjang Ketiga Sisi;
$[PFC]=\sqrt{s(s-a)(s-b)(s-c)}$
dimana $s=\frac{1}{2} \times \text{keliling}\ \triangle PFC$
$s=\frac{1}{2}(PF+CP+CF)$
Dengan menggunakan teorema phytagoras kita mampu menghitung panjang ketiga sisi $\triangle PFC$,
$PF=2\sqrt{5}=a$; $CP=6=b$ dan $CF=4\sqrt{2}=c$
$s=\frac{1}{2}(2\sqrt{5}+6+4\sqrt{2})$
$s=\sqrt{5}+3+2\sqrt{2}$
$s-a=\sqrt{5}+3+2\sqrt{2}-2\sqrt{5}=3+2\sqrt{2}-\sqrt{5}$
$s-b=\sqrt{5}+3+2\sqrt{2}-6=\sqrt{5}+2\sqrt{2}-3$
$s-c=\sqrt{5}+3+2\sqrt{2}-4\sqrt{2}=\sqrt{5}+3-2\sqrt{2}$

$[PFC]=\sqrt{s(s-a)(s-b)(s-c)}$
$[PFC]=\sqrt{(\sqrt{5}+3+2\sqrt{2})(3+2\sqrt{2}-\sqrt{5})(\sqrt{5}+2\sqrt{2}-3)(\sqrt{5}+3-2\sqrt{2})}$
$[PFC]=\sqrt{((3+2\sqrt{2})^{2}-5)(5+3\sqrt{5}-2\sqrt{10}+2\sqrt{10}+6\sqrt{2}-8-3\sqrt{5}-9+6\sqrt{2})}$
$[PFC]=\sqrt{(9+12\sqrt{2}+8-5)(-12+12\sqrt{2})}$
$[PFC]=\sqrt{(12\sqrt{2}+12)(12\sqrt{2}-12)}$
$[PFC]=\sqrt{288-144}$
$[PFC]=\sqrt{144}=12$

Luas $\triangle PFC$ mampu juga kita hitung luasnya dengan cara;
$[PFC]=\frac{1}{2} \times CF \times PP'$
$[PFC]=\frac{1}{2} \times 4\sqrt{2} \times PP'$
$12=2\sqrt{2} \times PP'$
$PP'=\frac{12}{2\sqrt{2}}$
$PP'=3\sqrt{2}$

Jarak titik $P$ ke garis $CF$ ialah $3\sqrt{2}$

Soal Nomor 10:

Panjang rusuk kubus $ABCD.EFGH$ ialah $6\ cm$. Tentukan jarak titik $C$ dengan bidang $BDG$.
Alternatif Pembahasan:

Jika kita ilustrasikan gambar soal diatas kurang lebih ibarat berikut ini;

ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)
Dengan memperhatikan gambar diatas, problem ini sama dengan problem soal nomor 2, jadi jikalau untuk menghitungnya dengan terpenrinci coba ikuti langkah-langkah pada soal nomor 2.

Jarak titik $C$ ke bidang $BDG$ ialah $\frac{1}{3} a \sqrt{3}$ dengan $a$ adalh panjang rusuk, sehingga jarak titik $C$ ke bidang $BDG$ ialah $2 \sqrt{3}$.

Sebagai catatan; Jika ingin melihat penjelasan jarak titik ke bidang dengan posisi sama ibarat soal diatas ialah $\frac{1}{3} a \sqrt{3}$. Penjelasannya silahkan simak di Pertanyaan Tentang Jarak Titik ke Bidang [Geometri] atau Alat Peraga Rangka Bangun Ruang Terbuat Dari Kertas.


Jika engkau tidak mampu menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Sudah balasan semua nich.. teriak Mat puas kepada Tika,..
Iya sebentar saya coba buatkan teh dan goreng pisang semoga tenagamu pulih kembali,... balas Tika....

Betul-betul potong Ema, Mat sepertinya sudah kelelahan dan saya harus coba baca-baca kembali apa yang di tulis Mat ini, alasannya yakni ialah saya belum sepenuhnya mengerti, tetapi paling tidak sudah ada pencerahan sedikit ihwal jarak titik ke titik, jarak titik ke garis dan jarak titik ke bidang.

Sampai ketemu besok teman-teman, jikalau saya nanti ada kendala kita diskusikan kembali iya, tutup Ema๐Ÿ˜ŠCMIIW

UPDATE: Kumpulan Soal dan modul SBMPTN [Saintek-Soshum-TPA] dan STAN ๐Ÿ˜Š Silahkan didownload dan dipelajari, terkhusus bagi pelajar yang mau sukses SBMPTN atau UN tanpa bimbingan: (*Download Disini)

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Video pilihan khusus untuk Anda ๐Ÿ˜Š Masih menganggap matematika hanya hitung-hitungan semata, mari kita lihat kreativitas siswa ini;
ni ada beberapa soal ihwal dimensi tiga dari buku kelas XII kurikulum  Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)

Belum ada Komentar untuk "Matematika Dasar Dimensi Tiga (*Soal Uji Kompetensi Buku Kurikulum 2013)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel