Bank Soal Dan Pembahasan Matematika Dasar Limit Fungsi Trigonometri
Mempelajari dan menggunakan aturan-aturan pada limit fungsi trigonometri juga sangatlah mudah, jikalau Anda mengikuti step by step yang kita diskusikan dibawah ini, maka anda akan dengan simpel memahami soal-soal limit fungsi trigonometri dan menemukan solusinya.
Limit fungsi ini termasuk materi yang sangat penting dalam kehidupan kita sehari-hari. Hanya saja kita tidak sadar ternyata sedang menggunakan konsep limit fungsi.
Contoh sederhananya saat kita mengukur berat badan dan karenanya terlihat ialah $70,5\ kg$. Hasil $70,5\ kg$ ini bantu-membantu belum hasil pengukuran yang paling tepat tetapi sudah mampu mewakili hasil pengukuran, sebab ialah berat badan kita ialah mendekati $70,5\ kg$. Kata "mendekati" ialah salah satu kata kunci dalam berguru limit fungsi.
Limit Fungsi Aljabar ini merupakan dasar atau modal kita dalam mencoba merampungkan masalah yang berkaitan dengan Limit Fungsi Trigonometri, Limit Fungsi Tak hingga, Diferensial Fungsi (Turunan) dan hingga kepada Integral Fungsi.
Beberapa sampel soal Limit Fungsi Trigonometri untuk kita diskusikan kita sadur dari soal-soal SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri), soal SMMPTN (Seleksi Mandiri Masuk Perguruan Tinggi Negeri), soal UN (Ujian Nasional) atau soal ujian yang dilaksanakan di sekolah.
Pembahasan limit fungsi trigonometri yang kita jabarkan di bawah ini masih jauh dari sempurna, jadi jikalau ada masukan yang sifatnya membangun silahkan disampaikan.
Sedikit informasi aksesori yang mungkin tidak terlalu penting, kemarin siswa baru tamat penilaian harian ihwal limit dan ada beberapa siswa yang mendapatkan nilai sempurna, sehingga sebagai kenang-kenangan hasil pekerjaan siswa kita photo dan ditampilkan sebagai photo dari artikel ini sebab ialah hasil sempurna.
Berdasarkan defenisi limit, Jika nilai Limit Kiri = Limit Kanan=L secara simbol dituliskan $\lim\limits_{x \to a^{+}}f(x)=\lim\limits_{x \to a^{-}}f(x)=L$ maka nilai $\lim\limits_{x \to a}f(x)=L$.
Teorema dasar pada limit fungsi trigonometri ialah sebagai berikut:
- $\underset{x \to 0}{lim} \dfrac{sin\ x }{x} = 1 , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{ x }{sin\ x} = 1$
- $\underset{x \to 0}{lim} \dfrac{tan\ x }{x} = 1 , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{ x }{tan\ x} = 1$
- $\underset{x \to 0}{lim} \dfrac{sin\ ax }{bx} = \dfrac{a}{b} , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{ ax }{sin\ bx} = \dfrac{a}{b}$
- $\underset{x \to 0}{lim} \dfrac{tan\ ax }{bx} = \dfrac{a}{b} , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{ ax }{tan\ bx} = \dfrac{a}{b}$
- $\underset{x \to 0}{lim} \dfrac{sin\ ax }{sin\ bx} = \dfrac{a}{b} , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{tan\ ax }{tan\ bx} = \dfrac{a}{b}$
- $\underset{x \to 0}{lim} \dfrac{tan\ ax }{sin\ bx} = \dfrac{a}{b} , \, \, $ atau $\underset{x \to 0}{lim}\dfrac{sin\ ax }{tan\ bx} = \dfrac{a}{b}$
Teorema dasar limit fungsi trigonmetri di atas juga tetap menggunakan prinsip teorema limit pada fungsi aljabar yaitu jikalau nilai yang dihasilkan ialah bentuk tak tentu antara lain $\dfrac{0}{0}, \, \dfrac{\infty}{\infty} , \, \infty - \infty , \, 0^0 , \, \infty ^ \infty $ maka dilakukan manipulasi aljabar dengan cara memfaktorkan atau mengalikan dengan akar sekawan atau dengan Metode L'Hospital (Turunan).
Mari kita simak pola Soal dan Pembahasan Limit Fungsi Trigonometri berikut 😊
1. Soal UM STIS 2017 (*Soal Lengkap)
$\underset{x \to 2}{lim} \dfrac{\left( x^{2}-5x-6\right)\ sin\ 2(x-2) }{\left( x^{2}-x-2\right)} \cdots$
$\begin{align}
(A)\ & -8 \\
(B)\ & -5 \\
(C)\ & -2 \\
(D)\ & \dfrac{3}{4} \\
(E)\ & 5
\end{align}$
$\begin{align}
& \underset{x \to 2}{lim} \dfrac{\left( x^{2}-5x-6\right)\ sin\ 2(x-2) }{\left( x^{2}-x-2 \right)} \\
& = \underset{x \to 2}{lim} \dfrac{(x+1)(x-6)\ sin\ 2(x-2) }{(x-2)(x+1)} \\
& = \underset{x \to 2}{lim} \dfrac{(x-6)\ sin\ 2(x-2) }{(x-2)} \\
& = \underset{x \to 2}{lim} (x-6) \cdot \underset{x \to 2}{lim} \dfrac{sin\ 2(x-2) }{(x-2)} \\
& = (2-6) \cdot 2 \\
& = -4 \cdot 2 =-8 \\
\end{align}$
$\therefore$ Pilihan yang sesuai $(A)\ - 8$
2. Soal SBMPTN 2018 Kode 423 (*Soal Lengkap)
$\underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) }{2- \sqrt{6-x}} =\cdots$
$\begin{align}
(A)\ & -8 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 8
\end{align}$
$\begin{align}
& \underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) }{2- \sqrt{6-x}} \\
& = \underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) }{2- \sqrt{6-x}} \cdot \dfrac{2+ \sqrt{6-x}}{2+ \sqrt{6-x}} \\
& = \underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) \left( 2+ \sqrt{6-x} \right) }{4- \left( 6-x \right)} \\
& = \underset{x \to 2}{lim} \dfrac{sin\ \left( 2x-4 \right) \left( 2+ \sqrt{6-x} \right) }{4- 6+x } \\
& = \underset{x \to 2}{lim} \dfrac{sin\ 2\left( x-2 \right) \left( 2+ \sqrt{6-x} \right) }{x-2 } \\
& = \underset{x \to 2}{lim} \dfrac{sin\ 2\left( x-2 \right)}{x-2 } \cdot \underset{x \to 2}{lim} \left( 2+ \sqrt{6-x} \right) \\
& = 2 \cdot \left( 2+ \sqrt{6-2} \right) \\
& = 2 \cdot ( 2+ 2)=8 \\
\end{align}$
$\therefore$ Pilihan yang sesuai $(E)\ 8$
3. Soal SBMPTN 2017 Kode 106 (*Soal Lengkap)
$\underset{x \to 0}{lim} \dfrac{sec\ x+cos\ x-2}{x^{2}\ sin^{2}x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{8} \\
(B)\ & -\dfrac{1}{4} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{4} \\
(E)\ & \dfrac{1}{8}
\end{align}$
Identitas trigonometri yg mungkin diperlukan:
$cos\ 4x=cos^{2}2x-sin^{2}2x$
$cos\ 2x=cos^{2}x-sin^{2}x$
$cos\ x=cos^{2} \dfrac{1}{2}x-sin^{2}\dfrac{1}{2}x$
$1=cos^{2} \dfrac{1}{2}x+sin^{2}\dfrac{1}{2}x$
$cos\ x - 1=-2sin^{2}\dfrac{1}{2}x$
Kita kembali ke soal;
$\begin{align}
& \underset{x \to 0}{lim} \dfrac{sec\ x+cos\ x-2}{x^{2}\ sin^{2}x}\\
= & \underset{x \to 0}{lim} \dfrac{\dfrac{1}{cos\ x}+\dfrac{cos^{2}x}{cos\ x}-\dfrac{2\ cos\ x}{cos\ x}}{x^{2}\ sin^{2}x}\\
= & \underset{x \to 0}{lim} \dfrac{cos^{2}-2\ cos\ x+1}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \underset{x \to 0}{lim} \dfrac{\left (cos\ x-1 \right )^{2}}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \underset{x \to 0}{lim} \dfrac{\left (-2sin^{2}(\dfrac{1}{2}x) \right )^{2}}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \underset{x \to 0}{lim} \dfrac{4\ sin^{2}(\dfrac{1}{2}x)\ sin^{2}(\dfrac{1}{2}x)}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \underset{x \to 0}{lim} 4\ \cdot \dfrac{sin^{2}(\dfrac{1}{2}x)}{x^{2}} \cdot \dfrac{sin^{2}(\dfrac{1}{2}x)}{sin^{2}x} \cdot \dfrac{1}{cos\ x}\\
= & 4\ \cdot \dfrac{1}{4} \cdot \dfrac{1}{4} \cdot \dfrac{1}{1} = \dfrac{1}{4}
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{1}{4}$
4. Soal SBMPTN 2016 Kode 255 (*Soal Lengkap)
$\underset{x \to 0}{lim} \dfrac{x^{3}}{\sqrt{1+sin\ x}-\sqrt{1+tan\ x}}=\cdots$
$\begin{align}
(A)\ & -4 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
$\begin{align}
& \underset{x \to 0}{lim} \dfrac{x^{3}}{\sqrt{1+sin\ x}-\sqrt{1+tan\ x}} \\
& = \underset{x \to 0}{lim} \dfrac{x^{3}}{\sqrt{1+sin\ x}-\sqrt{1+tan\ x}} \cdot \dfrac{\sqrt{1+sin\ x}+\sqrt{1+tan\ x}}{\sqrt{1+sin\ x}+\sqrt{1+tan\ x}} \\
& \underset{x \to 0}{lim} \dfrac{x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{1+sin\ x-1-tan\ x} \\
& = \underset{x \to 0}{lim} \dfrac{x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x-tan\ x} \\
& = \underset{x \to 0}{lim} \dfrac{x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x (1-\frac{1}{cos\ x})} \\
& = \underset{x \to 0}{lim} \dfrac{x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x \cdot \frac{cos\ x -1}{cos\ x}} \\
& = \underset{x \to 0}{lim} \dfrac{cos\ x \cdot x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x (cos\ x -1)} \\
& = \underset{x \to 0}{lim} \dfrac{cos\ x \cdot x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x (1-2 sin^{2} \frac{1}{2}x -1)} \\
& = \underset{x \to 0}{lim} \dfrac{cos\ x \cdot x^{3} \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right)}{sin\ x (-2 sin^{2} \frac{1}{2}x)} \\
& = \underset{x \to 0}{lim}\ cos\ x \left( \sqrt{1+sin\ x}+\sqrt{1+tan\ x} \right) \cdot \underset{x \to 0}{lim} \dfrac{x^{3}}{sin\ x (-2 sin^{2} \frac{1}{2}x)}\\
& = cos\ 0 \left( \sqrt{1+sin\ 0}+\sqrt{1+tan\ 0} \right) \cdot \dfrac{1}{-2 \cdot \frac{1}{2} \cdot \frac{1}{2}} \\
& = 1 \left( \sqrt{1}+\sqrt{1} \right) \cdot \dfrac{1}{-\frac{1}{2}}\\
& = 2 \cdot (-2) =-4
\end{align}$
$\therefore$ Pilihan yang sesuai $(A)\ -4$
5. Soal SBMPTN 2013 Kode 338 (*Soal Lengkap)
$\underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x - cos\ x +1}=\cdots$
$\begin{align}
(A)\ & 2 \\
(B)\ & \frac{3}{2} \\
(C)\ & 1 \\
(D)\ & \frac{2}{3} \\
(E)\ & -1
\end{align}$
$\begin{align}
& \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x - cos\ x +1} \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x +1- cos\ x} \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x +2 sin^{2} \dfrac{1}{2}x} \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{x\ sin\ x +2 sin^{2} \dfrac{1}{2}x} \cdot \dfrac{\dfrac{1}{x^{2}}}{\dfrac{1}{x^{2}}} \\
&= \underset{x \to 0}{lim} \dfrac{\dfrac{x\ tan\ x}{x^{2}}}{\dfrac{x\ sin\ x}{x^{2}} +\dfrac{2 sin^{2} \dfrac{1}{2}x}{x^{2}}} \\
&= \dfrac{1}{1+2 \cdot \dfrac{1}{2} \cdot \dfrac{1}{2}} \\
&= \dfrac{1}{1+\dfrac{1}{2}} \\
&= \dfrac{1}{\dfrac{3}{2}}= \dfrac{2}{3}
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{2}{3}$
6. Soal SBMPTN 2013 Kode 131 (*Soal Lengkap)
$\underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{sin^{2} x - cos\ 2x +1}}=\cdots$
$\begin{align}
(A)\ & 3 \\
(B)\ & \sqrt{3} \\
(C)\ & \frac{\sqrt{3}}{3} \\
(D)\ & \frac{1}{3} \\
(E)\ & \frac{\sqrt{3}}{2}
\end{align}$
$\begin{align}
& \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{sin^{2} x - cos\ 2x +1}} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{sin^{2} x + 1- cos\ 2x }} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{sin^{2} x + 2sin^{2} x }} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{3 sin^{2} x }} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{x\ tan\ x}{3 sin\ x\ sin\ x}} \\
&= \underset{x \to 0}{lim} \sqrt{\dfrac{1}{3} \cdot \dfrac{x}{sin\ x} \cdot \dfrac{tan\ x}{sin\ x}} \\
&= \sqrt{\dfrac{1}{3} \cdot 1 \cdot 1} \\
&= \sqrt{\dfrac{1}{3}} \\
&= \dfrac{1}{3}\sqrt{3}
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ \frac{\sqrt{3}}{3}$
7. Soal SBMPTN 2013 Kode 132 (*Soal Lengkap)
$\underset{x \to 0}{lim} \dfrac{x\ tan\ x}{sin^{2} x - cos\ 2x +1}=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & \frac{1}{3} \\
(C)\ & \frac{2}{3} \\
(D)\ & -\frac{1}{2} \\
(E)\ & -1
\end{align}$
$\begin{align}
& \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{sin^{2} x - cos\ 2x +1} \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{sin^{2} x + 1- cos\ 2x } \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{sin^{2} x + 2sin^{2} x } \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{3 sin^{2} x } \\
&= \underset{x \to 0}{lim} \dfrac{x\ tan\ x}{3 sin\ x\ sin\ x} \\
&= \underset{x \to 0}{lim} \dfrac{1}{3} \cdot \dfrac{x}{sin\ x} \cdot \dfrac{tan\ x}{sin\ x} \\
&= \dfrac{1}{3} \cdot 1 \cdot 1 \\
&= \dfrac{1}{3}
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ \frac{1}{3}$
8. Soal UM UGM 2017 Kode 713 (*Soal Lengkap)
$\underset{x \to -4}{lim} \dfrac{1-cos(x+4)}{x^{2}+8x+16}=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -\frac{1}{2} \\
(C)\ & \frac{1}{3} \\
(D)\ & \frac{1}{2} \\
(E)\ & 2
\end{align}$
$\begin{align}
& \underset{x \to -4}{lim} \dfrac{1-cos(x+4)}{x^{2}+8x+16} \\
& = \underset{x \to -4}{lim} \dfrac{1-cos(x+4)}{(x+4)(x+4)} \\
& = \underset{x \to -4}{lim} \dfrac{2 sin^{2} \dfrac{1}{2}(x+4)}{(x+4)(x+4)} \\
& = \underset{x \to -4}{lim} \dfrac{2 sin \dfrac{1}{2}(x+4)}{(x+4)} \cdot \underset{x \to -4}{lim} \dfrac{sin \dfrac{1}{2}(x+4)}{(x+4)} \\
& = 2 \cdot \dfrac{1}{2} \cdot \dfrac{1}{2} \\
& = \dfrac{1}{2}
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ \frac{1}{2}$
9. Soal UM UNDIP 2010 Kode 101 (*Soal Lengkap)
$\underset{x \to y}{lim} \dfrac{sin\ x - sin\ y}{x-y}=\cdots$
$\begin{align}
(A)\ & sin\ x \\
(B)\ & sin\ y \\
(C)\ & 0 \\
(D)\ & cos\ x \\
(E)\ & cos\ y
\end{align}$
Untuk merampungkan bentuk ini, kita gunakan sedikit identitas trigonometri yaitu $sin\ x - sin\ y$ ialah $2\ cos\ \dfrac{1}{2}(x+y)\ sin\ \dfrac{1}{2}(x-y)$.
$\begin{align}
& \underset{x \to y}{lim} \dfrac{sin\ x - sin\ y}{x-y} \\
& = \underset{x \to y}{lim} \dfrac{2\ cos\ \dfrac{1}{2}(x+y)\ sin\ \dfrac{1}{2}(x-y)}{x-y} \\
& = \underset{x \to y}{lim}\ 2\ cos\ \dfrac{1}{2}(x+y) \times \underset{x \to y}{lim} \dfrac{sin\ \dfrac{1}{2}(x-y)}{x-y} \\
& = 2\ cos\ \dfrac{1}{2}(y+y) \times \dfrac{1}{2} \\
& = cos\ \dfrac{1}{2}(2y) \\
& = cos\ y
\end{align}$
$\therefore$ Pilihan yang sesuai $(E)\ cos\ y$
10. Soal UM UNDIP 2010 Kode 101 (*Soal Lengkap)
$\underset{x \to -1}{lim} \dfrac{sin(1-x^{2})\ cos (1-x^{2})}{x^{2}-1}=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & -1 \\
(C)\ & 2 \\
(D)\ & -2 \\
(E)\ & 0
\end{align}$
Untuk merampungkan soal di atas kita coba dengan memisalkan $1-x^{2}=m$, sebab ialah $x \to -1$ maka $m \to 0$.
$\begin{align}
& \underset{x \to -1}{lim} \dfrac{sin(1-x^{2})\ cos (1-x^{2})}{x^{2}-1} \\
& = \underset{m \to 0}{lim} \dfrac{sin\ m\ cos\ m}{-m} \\
& = \underset{m \to 0}{lim}\ cos\ m \cdot \underset{m \to 0}{lim} \dfrac{sin\ m}{-m} \\
& = cos\ 0 \cdot -1 \\
& = 1 \cdot -1 =-1
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ -1$
11. Soal SIMAK UI 2012 Kode 221 (*Soal Lengkap)
$\underset{x \to 1}{lim} \dfrac{sin\ 2(x-1)}{(x^{2}-2x+1)\ cot\ \frac{1}{2}(x-1)}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 1 \\
(D)\ & 2 \\ \\
(E)\ & 4
\end{align}$
$\begin{align}
& \underset{x \to 1}{lim} \dfrac{sin\ 2(x-1)}{(x^{2}-2x+1)\ cot\ \frac{1}{2}(x-1))} \\
&= \underset{x \to 1}{lim} \dfrac{sin\ 2(x-1)}{(x^{2}-2x+1)\ \cdot \dfrac{cos\ \frac{1}{2}(x-1)}{sin\ \frac{1}{2}(x-1)}} \\
&= \underset{x \to 1}{lim} \left( \dfrac{sin\ 2(x-1)}{(x-1)(x-1)} \cdot \dfrac{sin\ \frac{1}{2}(x-1)}{cos\ \frac{1}{2}(x-1)} \right) \\
&= \underset{x \to 1}{lim} \left( \dfrac{sin\ 2(x-1)}{ (x-1)} \cdot \dfrac{ sin\ \frac{1}{2}(x-1)}{(x-1)} \cdot \dfrac{1}{cos\ \frac{1}{2}(x-1)} \right) \\
&= \left( 2 \cdot \dfrac{1}{2} \cdot \dfrac{1}{cos\ \frac{1}{2}(1-1)} \right) \\
&= 1 \cdot \dfrac{1}{1} \\
&= 1
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ 1$
12. Soal SIMAK UI 2009 Kode 941 (*Soal Lengkap)
$\underset{x \to \frac{\pi}{2}}{lim} \dfrac{\pi (\pi-2x)\ tan \left ( x-\frac{\pi}{2} \right)}{2(x-\pi)\ cos^{2}x }=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & -\dfrac{1}{2} \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Untuk merampungkan soal limit trigonometri di atas, menyerupai kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya mampu kita gunakan pada manipulasi aljabar;
- $ tan \left ( \dfrac{\pi}{2}-x \right)=cotan\ x$
- $ cotan\ x =\dfrac{cos\ x}{sin\ x}$
- $sin\ 2x = 2 sin\ x\ cos\ x$
- $ sin \left ( \pi -2x \right)=sin\ 2x$
& \underset{x \to \frac{\pi}{2}}{lim} \dfrac{\pi (\pi-2x)\ tan \left ( x-\frac{\pi}{2} \right)}{2(x-\pi)\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{\pi (\pi-2x)\ \left ( - tan \left ( \frac{\pi}{2}-x \right) \right)}{2(x-\pi)\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x)\ cotan\ x }{2(x-\pi)\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x)\ \dfrac{cos\ x}{sin\ x} }{2(x-\pi)\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x)\ cos\ x }{2(x-\pi)\ sin\ x\ cos^{2}x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x) }{2(x-\pi)\ sin\ x\ cos\ x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x) }{ (x-\pi)\ sin\ 2x } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi (\pi-2x) }{ (x-\pi)\ sin\ (\pi-2x) } \\
& = \underset{x \to \frac{\pi}{2}}{lim} \dfrac{-\pi }{ (x-\pi)} \\
& = \dfrac{-\pi }{ \frac{\pi}{2}-\pi } \\
& = \dfrac{-\pi }{ -\frac{\pi}{2} } = 2
\end{align}$
$\therefore$ Pilihan yang sesuai $(E)\ 2$
13. Soal SPMB 2006 Kode 510 (*Soal Lengkap)
$\underset{x \to 4}{lim} \dfrac{sin\ \left( 4-2\sqrt{x} \right)}{4-x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{6} \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{4} \\
(E)\ & \dfrac{1}{2}
\end{align}$
$\begin{align}
& \underset{x \to 4}{lim} \dfrac{sin\ \left( 4-2\sqrt{x} \right)}{4-x} \\
& = \underset{x \to 4}{lim} \dfrac{sin\ 2\left( 2- \sqrt{x} \right)}{\left( 2- \sqrt{x} \right)\left( 2+ \sqrt{x} \right)} \\
& = \underset{x \to 4}{lim} \left( \dfrac{sin\ 2\left( 2- \sqrt{x} \right)}{\left( 2- \sqrt{x} \right)} \times \dfrac{1}{\left( 2+ \sqrt{x} \right)} \right)\\
& = 2 \times \dfrac{1}{\left( 2+ \sqrt{4} \right)} \\
& = 2 \times \dfrac{1}{4}= \dfrac{1}{2}
\end{align}$
$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{1}{2}$
14. Soal SPMB 2006 Kode 720 (*Soal Lengkap)
$\underset{x \to 0}{lim} \dfrac{sin\ \left( 3x-\pi \right)}{\sqrt[3]{8+x}\ tan\ 2x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{3}{2} \\
(B)\ & -\dfrac{3}{4} \\
(C)\ & -\dfrac{1}{4} \\
(D)\ & \dfrac{1}{4} \\
(E)\ & \dfrac{3}{4}
\end{align}$
$\begin{align}
& \underset{x \to 0}{lim} \dfrac{sin\ \left( 3x-\pi \right)}{\sqrt[3]{8+x}\ tan\ 2x} \\
& = \underset{x \to 0}{lim} \dfrac{-sin\ \left( \pi-3x \right)}{\sqrt[3]{8+x}\ tan\ 2x} \\
& = \underset{x \to 0}{lim} \dfrac{-sin\ 3x}{\sqrt[3]{8+x}\ tan\ 2x} \\
& = \underset{x \to 0}{lim} \left( \dfrac{1}{\sqrt[3]{8+x}} \times \dfrac{-sin\ 3x}{tan\ 2x} \right) \\
& = \dfrac{1}{\sqrt[3]{8+0}} \times \dfrac{- 3 }{ 2 } \\
& = \dfrac{1}{2} \times \dfrac{-3}{2} = -\dfrac{3}{4}
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ -\dfrac{3}{4}$
15. Soal UM UGM 2006 Kode 381 (*Soal Lengkap)
$\underset{x \to 0}{lim} \left( \dfrac{1}{x}-\dfrac{1}{x\ cos\ x} \right)=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{2} \\
(E)\ & 1
\end{align}$
Untuk merampungkan soal limit trigonometri di atas, menyerupai kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya mampu kita gunakan pada manipulasi aljabar;
- $cos\ 2x= cos^{2}x-sin^{2}x$
- $cos\ 2x= 1-2sin^{2}x$
- $cos\ x= 1-2sin^{2} \left( \frac{1}{2}x \right)$
& \underset{x \to 0}{lim} \left( \dfrac{1}{x}-\dfrac{1}{x\ cos\ x} \right) \\
& = \underset{x \to 0}{lim} \left( \dfrac{x\ cos\ x-x}{x^{2}\ cos\ x} \right) \\
& = \underset{x \to 0}{lim} \left( \dfrac{ cos\ x-1 }{x\ cos\ x} \right) \\
& = \underset{x \to 0}{lim} \left( \dfrac{ -2sin^{2} \left( \frac{1}{2}x \right) }{x\ cos\ x} \right) \\
& = \underset{x \to 0}{lim} \left( \dfrac{ -2sin \left( \frac{1}{2}x \right) }{x} \times \dfrac{sin \left( \frac{1}{2}x \right) }{cos\ x} \right)\\
& = -2 \cdot \dfrac{1}{2} \times \dfrac{ sin\ 0 }{cos\ 0} \\
& = -1 \times \dfrac{0}{1} = 0
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ 0$
16. Soal SPMB 2006 Kode 121 (*Soal Lengkap)
$\underset{x \to 5}{lim} \dfrac{2x^{3}-20x^{2}+50x}{sin^{2}(x-5)cos(2x-10)}=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & 1 \\
(C)\ & 5 \\
(D)\ & 10 \\
(E)\ & \infty
\end{align}$
$\begin{align}
& \underset{x \to 5}{lim} \dfrac{2x^{3}-20x^{2}+50x}{sin^{2}(x-5)cos(2x-10)} \\
& = \underset{x \to 5}{lim} \dfrac{2x \left( x^{2}-10x +25 \right) }{sin^{2}(x-5)cos (2x-10)} \\
& = \underset{x \to 5}{lim} \dfrac{2x \left( x-5 \right)\left( x-5 \right) }{sin^{2}(x-5)cos(2x-10)} \\
& = \underset{x \to 5}{lim} \left( \dfrac{\left( x-5 \right)\left( x-5 \right) }{sin^{2}(x-5)} \times \dfrac{2x}{cos(2x-10)} \right)\\
& = 1 \times \dfrac{2(5)}{cos(2(5)-10)} \\
& = 1 \times \dfrac{10}{cos(0)} = 10
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ 10$
17. Soal SPMB 2006 Kode 310 (*Soal Lengkap)
$\underset{x \to \frac{1}{2}\pi}{lim} \dfrac{sin\ x\ tan(2x-\pi)}{2\pi-4x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{2} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & \dfrac{1}{3} \sqrt{3} \\
(D)\ & 1 \\
(E)\ & \sqrt{3}
\end{align}$
$\begin{align}
& \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{sin\ x\ tan(2x-\pi)}{2\pi-4x} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{sin\ x\ \left(- tan(\pi-2x) \right)}{2 (\pi-2x)} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{-sin\ x\ tan(\pi-2x) }{2 (\pi-2x)} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \left( \dfrac{-sin\ x}{2} \times \dfrac{tan(\pi-2x) }{ \pi-2x } \right) \\
& = \dfrac{-sin\ \left( \frac{1}{2}\pi \right)}{2} \times 1 \\
& = \dfrac{-1}{2}
\end{align}$
$\therefore$ Pilihan yang sesuai $(A)\ -\dfrac{1}{2}$
18. Soal SPMB 2006 Kode 111 (*Soal Lengkap)
$\underset{x \to \frac{1}{2}\pi}{lim} \dfrac{ \left(x-\frac{1}{2} \pi \right)^{2}\ sin\ x}{cos^{2}x}=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
$\begin{align}
& \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{ \left(x-\frac{1}{2} \pi \right)^{2}\ sin\ x}{cos^{2}x} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \dfrac{ \left(\frac{1}{2} \pi-x \right)^{2}\ sin\ x}{sin^{2}\left(\frac{1}{2} \pi-x \right)} \\
& = \underset{x \to \frac{1}{2}\pi}{lim} \left( \dfrac{ \left(\frac{1}{2} \pi-x \right)^{2}}{sin^{2}\left(\frac{1}{2} \pi-x \right)} \times sin\ x \right) \\
& = 1 \times sin\ \frac{1}{2} \pi \\
& = 1 \times 1 =1
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ 1$
19. Soal SPMB 2006 Kode 420 (*Soal Lengkap)
$\underset{x \to 0}{lim} \dfrac{x^{2}\ \sqrt{4-x^{3}}}{cos\ x-cos\ 3x}=\cdots$
$\begin{align}
(A)\ & -\dfrac{3}{2} \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{2} \\
(E)\ & \dfrac{3}{2}
\end{align}$
Untuk merampungkan soal limit trigonometri di atas, menyerupai kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya mampu kita gunakan pada manipulasi aljabar;
- $cos\ A +cos\ B = 2cos \left( \dfrac{A+B}{2} \right)\ sin \left( \dfrac{A-B}{2} \right)$
- $cos\ A -cos\ B= 2sin \left( \dfrac{A+B}{2} \right)\ sin \left( \dfrac{A-B}{2} \right)$
- $cos\ x -cos\ 3x= -2sin \left( \dfrac{x+3x}{2} \right)\ sin \left( \dfrac{x-3x}{2} \right)$
$cos\ x -cos\ 3x= -2sin \left(2x \right)\ sin \left(-x \right)$
& \underset{x \to 0}{lim} \dfrac{x^{2}\ \sqrt{4-x^{3}}}{cos\ x-cos\ 3x} \\
& = \underset{x \to 0}{lim} \dfrac{x^{2}\ \sqrt{4-x^{3}}}{-2sin \left(2x \right)\ sin \left(-x \right)} \\
& = \underset{x \to 0}{lim} \dfrac{x^{2}\ \sqrt{4-x^{3}}}{ 2sin \left(2x \right)\ sin \left( x \right)} \\
& = \underset{x \to 0}{lim} \left( \dfrac{x^{2}}{ 2sin \left(2x \right)\ sin \left( x \right)} \times\ \sqrt{4-x^{3}} \right) \\
& = \dfrac{1}{ 2 \cdot 2} \times \ \sqrt{4-0^{3}} \\
& = \dfrac{1}{4} \times 2 = \dfrac{1}{2}
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{1}{2}$
20. Soal UM UGM 2005 Kode 611 (*Soal Lengkap)
$\underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(x-\frac{\pi}{4} \right) tan \left(3x-\frac{3\pi}{4} \right) }{2 \left( 1-sin\ 2x \right)}=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & -\dfrac{3}{2} \\
(C)\ & \dfrac{3}{2} \\
(D)\ & -\dfrac{3}{4} \\
(E)\ & \dfrac{3}{4}
\end{align}$
Untuk merampungkan soal limit trigonometri di atas, menyerupai kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya mampu kita gunakan pada manipulasi aljabar;
- $cos\ \left( \frac{1}{2}\pi -x \right) = sin\ \left( x \right)$
- $cos\ 2x= cos^{2}x-sin^{2}x$
- $cos\ 2x= 1-2sin^{2}x$
- $cos\ x= 1-2sin^{2} \left( \frac{1}{2}x \right)$
& \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(x-\frac{\pi}{4} \right) tan\ \left(3x-\frac{3\pi}{4} \right) }{2\left( 1-sin\ 2x \right)} \\
& = \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(x-\frac{\pi}{4} \right) \left(-tan\ \left(\frac{3\pi}{4}-3x \right) \right) }{2 \left(1-cos\ \left( \frac{1}{2}\pi-2x \right)\right)} \\
&= \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ -\left(x-\frac{\pi}{4} \right) tan\ 3\left( \frac{\pi}{4}-x \right) }{2 \left( 2sin^{2} \left( \frac{1}{2} \left( \frac{1}{2}\pi-2x \right) \right) \right)} \\
&= \underset{x \to \frac{1}{4}\pi}{lim}\ \dfrac{ \left(\frac{\pi}{4}-x \right) tan\ 3\left( \frac{\pi}{4}-x \right) }{4sin^{2} \left( \frac{1}{4}\pi-x \right)} \\
&= \underset{x \to \frac{1}{4}\pi}{lim}\ \left( \dfrac{ \left(\frac{\pi}{4}-x \right)}{4sin\ \left( \frac{1}{4}\pi-x \right)} \times \dfrac{tan\ 3\left( \frac{\pi}{4}-x \right) }{ sin\ \left( \frac{1}{4}\pi-x \right)} \right) \\
&= \dfrac{ 1}{4} \times \dfrac{ 3 }{1} = \dfrac{3}{4}
\end{align}$
$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{3}{4}$
21. Soal UM UGM 2005 Kode 812 (*Soal Lengkap)
$\underset{x \to 0}{lim}\ \dfrac{x\ tan\ 5x}{cos\ 2x - cos\ 7x}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{9} \\
(B)\ & -\dfrac{1}{9} \\
(C)\ & \dfrac{2}{9} \\
(D)\ & -\dfrac{2}{9} \\
(E)\ & 0
\end{align}$
Untuk merampungkan soal limit trigonometri di atas, menyerupai kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar harus kita mampu gunakan pada manipulasi aljabar;
- $cos\ A +cos\ B = 2cos \left( \dfrac{A+B}{2} \right)\ sin \left( \dfrac{A-B}{2} \right)$
- $cos\ A -cos\ B= 2sin \left( \dfrac{A+B}{2} \right)\ sin \left( \dfrac{A-B}{2} \right)$
- $cos\ 2x -cos\ 7x= -2sin \left( \dfrac{2x+7x}{2} \right)\ sin \left( \dfrac{2x-7x}{2} \right)$
$cos\ 2x -cos\ 7x= -2sin \left( \dfrac{9}{2}x \right)\ sin \left( \dfrac{-5}{2}x \right)$
& \underset{x \to 0}{lim}\ \dfrac{x\ tan\ 5x}{cos\ 2x - cos\ 7x} \\
& = \underset{x \to 0}{lim}\ \dfrac{x\ tan\ 5x}{-2sin \left( \dfrac{9}{2}x \right)\ sin \left( \dfrac{-5}{2}x \right)} \\
& = \underset{x \to 0}{lim}\ \left( \dfrac{x}{-2sin \left( \dfrac{9}{2}x \right)} \times \dfrac{ tan\ 5x}{sin \left( \dfrac{-5}{2}x \right)} \right) \\
& = \dfrac{1}{-2 \cdot \dfrac{9}{2}} \times \dfrac{5}{ \dfrac{-5}{2}} \\
& = \dfrac{1}{-9} \times -2 = \dfrac{2}{9}
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ \dfrac{2}{9}$
22. Soal SPMB 2005 Kode 270 (*Soal Lengkap)
$\underset{x \to 0}{lim}\ \dfrac{1-cos\ x}{2x\ sin\ 3x}=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & \dfrac{1}{12} \\
(C)\ & \dfrac{1}{6} \\
(D)\ & \dfrac{1}{3} \\
(E)\ & \dfrac{1}{2}
\end{align}$
Untuk merampungkan soal limit trigonometri di atas, menyerupai kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar harus kita mampu gunakan pada manipulasi aljabar;
- $cos\ \left( \frac{1}{2}\pi -x \right) = sin\ \left( x \right)$
- $cos\ 2x= cos^{2}x-sin^{2}x$
- $cos\ 2x= 1-2sin^{2}x$
- $cos\ x= 1-2sin^{2} \left( \frac{1}{2}x \right)$
& \underset{x \to 0}{lim}\ \dfrac{1-cos\ x}{2x\ sin\ 3x} \\
& = \underset{x \to 0}{lim}\ \dfrac{2sin^{2} \left( \frac{1}{2}x \right)}{2x\ sin\ 3x} \\
& = \underset{x \to 0}{lim}\ \left( \dfrac{2 sin \left( \frac{1}{2}x \right)}{2x} \times \dfrac{ sin \left( \frac{1}{2}x \right)}{sin\ 3x} \right)\\
& = \dfrac{2 \cdot \dfrac{1}{2}}{2} \times \dfrac{ \dfrac{1}{2}}{3} \\
& = \dfrac{1}{2} \times \dfrac{ \dfrac{1}{2} }{3}=\dfrac{1}{12}
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ \dfrac{1}{12}$
23. Soal SPMB 2005 Kode 181 (*Soal Lengkap)
$\underset{x \to 2}{lim}\ \dfrac{tan\ \left( 2-\sqrt{2x} \right)}{x^{2}-2x}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{8} \\
(C)\ & 0 \\
(D)\ & -\dfrac{1}{6} \\
(E)\ & -\dfrac{1}{4}
\end{align}$
$\begin{align}
& \underset{x \to 2}{lim}\ \dfrac{tan\ \left( 2-\sqrt{2x} \right)}{x^{2}-2x} \\
& = \underset{x \to 2}{lim}\ \dfrac{tan\ \left(-\sqrt{2}\left( \sqrt{x}-\sqrt{2} \right)\right)}{x(x-2)} \\
& = \underset{x \to 2}{lim}\ \dfrac{-tan\ \sqrt{2}\left( \sqrt{x}-\sqrt{2} \right)}{x\left( \sqrt{x}-\sqrt{2} \right)\left( \sqrt{x}+\sqrt{2} \right)} \\
& = \underset{x \to 2}{lim}\ \left( \dfrac{-tan\ \sqrt{2}\left( \sqrt{x}-\sqrt{2} \right)}{\left( \sqrt{x}-\sqrt{2} \right)} \times \dfrac{1}{x\ \left( \sqrt{x}+\sqrt{2} \right)} \right)\\
& = \dfrac{- \sqrt{2}}{1} \times \dfrac{1}{2\ \left( \sqrt{2}+\sqrt{2} \right)} \\
& = - \sqrt{2} \times \dfrac{1}{4\sqrt{2}} = -\dfrac{1}{4}
\end{align}$
$\therefore$ Pilihan yang sesuai $(E)\ -\dfrac{1}{4}$
24. Soal SPMB 2005 Kode 780 (*Soal Lengkap)
$\underset{x \to 1}{lim}\ \dfrac{ \left( x^{2}+x-2 \right) sin\ (x-1)}{x^{2}+x-2}=\cdots$
$\begin{align}
(A)\ & 4 \\
(B)\ & 3 \\
(C)\ & 0 \\
(D)\ & -\dfrac{1}{4} \\
(E)\ & -\dfrac{1}{2}
\end{align}$
$\begin{align}
& \underset{x \to 1}{lim}\ \dfrac{ \left( x^{2}+x-2 \right) sin\ (x-1)}{x^{2}+x-2} \\
& = \underset{x \to 1}{lim}\ \dfrac{ \left( x+2 \right)\left( x-1 \right) sin\ (x-1)}{\left( x-1 \right) \left( x-1 \right)} \\
& = \underset{x \to 1}{lim}\ \left( \dfrac{ \left( x+2 \right)\left( x-1 \right)}{\left( x-1 \right)} \times \dfrac{sin\ (x-1)}{\left( x-1 \right)} \right)\\
& = 1+2 \times 1 =3
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ 3$
25. Soal SPMB 2005 Kode 370 (*Soal Lengkap)
$\underset{x \to 0}{lim}\ \dfrac{-x^{2}}{1-cos\ x}=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Untuk merampungkan soal limit trigonometri di atas, menyerupai kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar harus kita mampu gunakan pada manipulasi aljabar;
- $cos\ \left( \frac{1}{2}\pi -x \right) = sin\ \left( x \right)$
- $cos\ 2x= cos^{2}x-sin^{2}x$
- $cos\ 2x= 1-2sin^{2}x$
- $cos\ x= 1-2sin^{2} \left( \frac{1}{2}x \right)$
& \underset{x \to 0}{lim}\ \dfrac{-x^{2}}{1-cos\ x} \\
& = \underset{x \to 0}{lim}\ \dfrac{-x^{2}}{2sin^{2} \left( \frac{1}{2}x \right)} \\
& = \underset{x \to 0}{lim}\ \left( \dfrac{-x }{2sin \left( \frac{1}{2}x \right)} \times \dfrac{x}{sin \left( \frac{1}{2}x \right)} \right) \\
& = \dfrac{-1}{2 \cdot \frac{1}{2}} \times \dfrac{1}{ \frac{1}{2} } \\
& = -1 \times 2 = -2
\end{align}$
$\therefore$ Pilihan yang sesuai $(A)\ -2$
26. Soal SPMB 2005 Kode 772 (*Soal Lengkap)
$\underset{x \to 0}{lim}\ \dfrac{-x+ tan\ x}{x}=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
$\begin{align}
& \underset{x \to 0}{lim}\ \dfrac{-x+ tan\ x}{x} \\
& = \underset{x \to 0}{lim}\ \left( \dfrac{-x}{x} + \dfrac{tan\ x}{x} \right) \\
& = \underset{x \to 0}{lim}\ \left( -1 + \dfrac{tan\ x}{x} \right) \\
& = -1 + 1 =0
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ 0$
27. Soal UM UGM 2004 Kode 121 (*Soal Lengkap)
$\underset{a \to 0}{lim} \dfrac{1}{a} \left( \dfrac{sin^{3}2a}{cos\ 2a}+sin\ 2a\ cos\ 2a \right)$ sama dengan
$\begin{align}
(A)\ & 0 \\
(B)\ & \frac{1}{2} \\
(C)\ & 1 \\
(D)\ & 2 \\
(E)\ & \infty
\end{align}$
$\begin{align}
& \underset{a \to 0}{lim} \dfrac{1}{a} \left( \dfrac{sin^{3}2a}{cos\ 2a}+sin\ 2a\ cos\ 2a \right) \\
& = \underset{a \to 0}{lim} \left( \dfrac{sin^{3}2a}{a \cdot cos\ 2a}+\dfrac{sin\ 2a}{a}\ \cdot cos\ 2a \right) \\
& = \underset{a \to 0}{lim} \left( \dfrac{sin\ 2a}{a} \cdot \dfrac{sin\ 2a}{cos\ 2a} \cdot \dfrac{sin\ 2a}{1}+\dfrac{sin\ 2a}{a}\ \cdot cos\ 2a \right) \\
& = 2 \cdot 0 \cdot 0 + 2 \cdot 1 \\
& = 2
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ 2$
28. Soal UM UGM 2004 Kode 322 (*Soal Lengkap)
$\underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{x^{2}-2x+1}=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & -\frac{1}{2} \\
(C)\ & 0 \\
(D)\ & \frac{1}{2} \\
(E)\ & 1
\end{align}$
$\begin{align}
& \underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{x^{2}-2x+1} \\
& = \underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{(x-1)(x-1)} \\
& = \underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{-(x-1)(1-x)} \\
& = \underset{x \to 1}{lim} \dfrac{tan\ (x-1)\ sin\ \left(1-\sqrt{x} \right)}{-(x-1) \left(1-\sqrt{x} \right)\left(1+\sqrt{x} \right)} \\
& = \underset{x \to 1}{lim} \left( \dfrac{tan\ (x-1)}{-(x-1)} \cdot \dfrac{sin\ \left(1-\sqrt{x} \right)}{\left(1-\sqrt{x} \right)} \cdot \dfrac{1}{\left(1+\sqrt{x} \right)} \right) \\
& = -1 \cdot 1 \cdot \dfrac{1}{\left(1+\sqrt{1}\right)} =\dfrac{1}{2}
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{1}{2}$
29. Soal SNMPTN 2008 Kode 201 (*Soal Lengkap)
$\underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ 1-2 sin\ x\ cos\ x}{cos\ x - sin\ x}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{2} \\
(B)\ & \dfrac{1}{2}\sqrt{2} \\
(C)\ & 1 \\
(D)\ & 0 \\
(E)\ & -1
\end{align}$
Untuk merampungkan soal limit trigonometri di atas, menyerupai kita sampaikan sebelumnya beberapa Identitas Trigonometri Dasar setidaknya mampu kita gunakan pada manipulasi aljabar;
$\begin{align}
& \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ 1-2 sin\ x\ cos\ x}{sin\ x - cos\ x} \\
& = \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ sin^{2}x+cos^{2}x-2 sin\ x\ cos\ x}{sin\ x - cos\ x} \\
& = \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(sin\ x-cos\ x \right)^{2}}{sin\ x - cos\ x} \\
& = \underset{x \to \frac{1}{4}\pi}{lim} \dfrac{ \left(sin\ x-cos\ x \right) }{1} \\
& = sin\ \frac{1}{4}\pi-cos\ \frac{1}{4}\pi \\
& = \dfrac{1}{2}\sqrt{2}-\dfrac{1}{2}\sqrt{2}=0
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ 0$
30. Soal UM STIS 2011 (*Soal Lengkap)
Jika $\underset{x \to 0}{lim} \dfrac{x^{a}\ sin^{4}x}{sin^{6}x}=1$, maka nilai $a$ yang memenuhi adalah...
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 4 \\
(E)\ & 5
\end{align}$
Catatan calon guru yang mungkin kita perlukan ihwal Limit Trigonometri yaitu $\underset{x \to 0}{lim} \dfrac{sin\ ax }{bx} = \dfrac{a}{b}$ atau $\underset{x \to 0}{lim}\dfrac{ ax }{sin\ bx} = \dfrac{a}{b}$.
$\begin{align}
\underset{x \to 0}{lim} \dfrac{x^{a}\ sin^{4}x}{sin^{6}x} & =1 \\
\underset{x \to 0}{lim} \dfrac{x^{a}\ sin^{4}x}{sin^{2}x \cdot sin^{4}x} & =1 \\
\underset{x \to 0}{lim} \dfrac{x^{a} }{sin^{2}x} & =1
\end{align}$
Agar nilai limit fungsi di atas benar ialah $1$, maka nilai $a=2$
$\therefore$ Pilihan yang sesuai $(B)\ 2$
31. Soal UM STIS 2011 (*Soal Lengkap)
Nilai dari $\underset{x \to \frac{\pi}{4}}{lim} \dfrac{1-2\ sin\ x\ cos\ x}{sin\ x-cos\ x}$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{2} \\
(B)\ & \dfrac{1}{2} \sqrt{2} \\
(C)\ & 1 \\
(D)\ & 0 \\
(E)\ & -1
\end{align}$
Catatan calon guru yang mungkin kita perlukan ihwal Limit Trigonometri yaitu $sin^{2}x+cos^{2}x=1$.
$\begin{align}
& \underset{x \to \frac{\pi}{4}}{lim} \dfrac{1-2\ sin\ x\ cos\ x}{sin\ x-cos\ x} \\
& = \underset{x \to \frac{\pi}{4}}{lim} \dfrac{sin^{2}x+cos^{2}x-2\ sin\ x\ cos\ x}{sin\ x-cos\ x} \\
& = \underset{x \to \frac{\pi}{4}}{lim} \dfrac{\left( sin\ x-cos\ x \right)^{2}}{sin\ x-cos\ x} \\
& = \underset{x \to \frac{\pi}{4}}{lim} \left( sin\ x-cos\ x \right)\\
& = \dfrac{1}{2}\sqrt{2}-\dfrac{1}{2}\sqrt{2} \\
& = 0
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ 0$
32. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Nilai $\lim\limits_{x \to 0} \dfrac{cot\ 2x - csc\ 2x}{cos\ 3x\ tan\ \frac{1}{3}x } =\cdots$
$\begin{align}
(A)\ & 3 \\
(B)\ & 2 \\
(C)\ & 0 \\
(D)\ & -2 \\
(E)\ & -3
\end{align}$
Catatan calon guru ihwal limit fungsi trigonometri yang mungkin kita butuhkan adalah:
- $\lim\limits_{x \to 0} \dfrac{tan\ ax }{bx} = \dfrac{a}{b}$
- $\lim\limits_{x \to 0} \dfrac{sin\ ax }{sin\ bx} = \dfrac{a}{b}$
- $\lim\limits_{x \to 0} \dfrac{tan\ ax }{sin\ bx} = \dfrac{a}{b}$
& \lim\limits_{x \to 0} \dfrac{cot\ 2x - csc\ 2x}{cos\ 3x\ tan\ \frac{1}{3}x } \\
& = \lim\limits_{x \to 0} \dfrac{\dfrac{cos\ 2x}{sin\ 2x} - \frac{1}{sin\ 2x}}{cos\ 3x\ tan\ \frac{1}{3}x } \\
& = \lim\limits_{x \to 0} \dfrac{\dfrac{cos\ 2x-1}{sin\ 2x}}{cos\ 3x\ tan\ \frac{1}{3}x } \\
& = \lim\limits_{x \to 0} \dfrac{ cos\ 2x-1}{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\
& = \lim\limits_{x \to 0} \dfrac{ 1-sin^{2} x-1}{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\
& = \lim\limits_{x \to 0} \dfrac{ -2sin^{2} x }{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\
& = \lim\limits_{x \to 0} \dfrac{ -2\ sin\ x\ sin\ x }{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\
& = \dfrac{ -2\ \cdot 1 \cdot 1 }{cos\ 0\ \cdot \frac{1}{3}\ \cdot 2 } \\
& = \dfrac{ -2 }{ \frac{2}{3} } =-3
\end{align} $
$ \therefore $ Pilihan yang sesuai ialah $(E)\ -3$
Jika engkau tidak mampu menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Dasar Limit Fungsi Trigonometri (*Soal Dari Berbagai Sumber) di atas ialah coretan kreatif siswa pada- lembar akhir penilaian harian matematika,
- lembar akhir penilaian tamat semester matematika,
- presentasi hasil diskusi matematika atau
- pembahasan quiz matematika di kelas.
Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊
Matematika mampu menghipnotis karakter kita, mari kita simak penjelasannya pada video berikut;
Belum ada Komentar untuk "Bank Soal Dan Pembahasan Matematika Dasar Limit Fungsi Trigonometri"
Posting Komentar