Rumus Operasi Matriks (Matriks Inverse, Transpose, Dan Identitas) Beserta Contohnya
Rumus Operasi Matriks (Matriks Inverse, Transpose, dan Identitas) Beserta Contohnya - Pada pelajaran matematika terdapat materi operasi matriks. Materi operasi matriks tersebut yakni suatu campuran beberapa simbol, bilangan maupun ekspresi yang memiliki bentuk persegi panjang dengan urutan baris dan kolom. Matriks tersebut digabung untuk dioperasikan menjadi bentuk yang paling kecil. Mungkin anda sudah paham mengenai apa itu matriks dan bagaimana bentuknya. Pada kesempatan kali ini saya akan menjelaskan mengenai penjelasan operasi matriks beserta contohnya. Langsung saja mampu anda simak dibawah ini.
Baik rumus matriks inverse, rumus matriks transpose, dan rumus matriks identitas mampu dengan praktis kita temukan dalam pembelajaran matematika di sekolah. Materi matriks memang sangat rumit kalau kita tidak memperhatikan dengan seksama penjelasan dari guru. Disamping itu kita juga harus teliti dalam hal perkalian, penjumlahan maupun pembagian dan pengurangan.
Contoh soal operasi matriks sendiri juga sering kita temukan dalam buku paket pedoman siswa maupun buku buku latihan yang mampu dibeli di toko buku setempat. Umumnya untuk mengasah pengetahuan kita setelah membaca materi rumus matriks inverse, transpose, dan identitas kita mampu membeli buku kumpulan pola soal matriks lalu mengerjakannya.
Untuk lebih jelasnya mampu anda simak pola penjumlahan matriks dibawah ini.
Dalam perkalian matriks terdapat istilah ordo matriks. Ordo tersebut adalah suatu elemen yang menerapkan jumlah baris dengan jumlah kolom pada operasi matriks. Berikut pola ordo matriks dengan 6 buah elemen, sehingga menerima hasil ordo matriks 3x2.
Matriks Identitas
Baik rumus matriks inverse, rumus matriks transpose, dan rumus matriks identitas mampu dengan praktis kita temukan dalam pembelajaran matematika di sekolah. Materi matriks memang sangat rumit kalau kita tidak memperhatikan dengan seksama penjelasan dari guru. Disamping itu kita juga harus teliti dalam hal perkalian, penjumlahan maupun pembagian dan pengurangan.
Contoh soal operasi matriks sendiri juga sering kita temukan dalam buku paket pedoman siswa maupun buku buku latihan yang mampu dibeli di toko buku setempat. Umumnya untuk mengasah pengetahuan kita setelah membaca materi rumus matriks inverse, transpose, dan identitas kita mampu membeli buku kumpulan pola soal matriks lalu mengerjakannya.
Rumus Operasi Matriks Beserta Contoh
Sudah saya jelaskan diatas bahwa matriks yakni suatu campuran beberapa simbol, bilangan maupun ekspresi yang memiliki bentuk persegi panjang dengan urutan baris dan kolom. Bilangan yang terdapat dalam operasi matriks bernama anggota atau elemen matriks. Dibawah ini terdapat pola bilangan matriks yang memiliki susunan 2 baris dan 3 kolom.
Matriks tersebut juga mampu digunakan untuk memecahkan dilema problem pada operasi matematika mirip transformasi linear yang berbentuk fungsi linear umum berupa rotasi 3 menit dan mampu merampungkan dilema persamaan linear. Operasi matriks juga mampu terdapat sebuah variabel sehingga mampu dikalikan, dikurangi, dijumlahkan, maupun didekomposisikan. Dalam melakukan penghitungan operasi matriks mampu menggunakan representasi matriks supaya lebih teratur. Maka pada penghitungan matriks mampu menghasilkan struktur dibawah ini.
Rumus matriks |
Dalam menghitung operasi matriks mampu menggunakan beberapa cara. Berikut cara menghitung bilangan bilangan matriks.
Baca juga : Macam Macam Rumus Luas Bangun Datar Beserta ContohOperasi matriks berupa pengurangan dan penjumlahan
Dalam melakukan penjumlahan maupun pengurangan pada matriks harus melihat apakah bentuk serta jenisnya sama. Operasi matriks ini harus memiliki bentuk dan jenis yang sama. Elemen matriks yang mampu dikurangkan maupun dijumlahkan harus memiliki letak yang sama. Sehingga memiliki struktur penjumlahan ataupun pengurangan dibawah ini:
rumus operasi matriks penjumlahan dan pengurangan |
Untuk lebih jelasnya mampu melihat proses penjumlahan dan pengurangan matriks dibawah ini.
Perkalian Skalar Matriks
Operasi matriks selanjutnya adalah mengalikan matriks dengan versi skalar. Perkalian ini menggunakan struktur pengalian kolom ke baris lalu dijumlahkan pada tipe kolom yang sama. Strukturnya mampu anda simak dibawah ini:
Jika didapat sebuah matriks A dan B berupa
Contoh matriks perkalian |
maka mampu dikalikan dengan menggunakan sususan perkalian matriks berupa
Contoh matriks perkalian |
Dalam perkalian matriks terdapat istilah ordo matriks. Ordo tersebut adalah suatu elemen yang menerapkan jumlah baris dengan jumlah kolom pada operasi matriks. Berikut pola ordo matriks dengan 6 buah elemen, sehingga menerima hasil ordo matriks 3x2.
Selain penghitungan operasi matriks diatas, adapula jenis jenis pengoperasian matriks. Jenis operasi matriks tersebut memiliki rumus dan penghitungan yang berbeda. Berikut penjelasannya:
Jenis operasi matriks yang pertama adalah matriks identitas yang memiliki elemen diagonal utamanya bernilai 1.
Rumus Matriks Transpose
Rumus matriks identitas |
Matriks Transpose yakni operasi matriks yang mengalami pergantian bilangan kolom menjadi baris maupu sebaliknya. Untuk lebih jelasnya mampu anda simak pola matriks transpose dibawah ini.
Rumus Matriks Transpose |
Baca juga : Sifat Sifat Bangun Datar (Segitiga, Persegi, Persegi Panjang, Lingkaran, Trapesium, Belah Ketupat, Layang Layang dan Jajar Genjang)
Determinan Matriks
Selanjutnya terdapat determinan matriks yang biasanya muncul dalam pengoperasian matriks. Operasi matriks ini menggunakan perkalian silang pada tiap diagonal dalam sebuah matriks. Perkalian silang tersebut lalu dikurangkan untuk menerima hasil final pada determinan ini. Seperti yang anda lihat dibawah ini terdapat pola bilangan matriks A.
lalu determinan matriksnya ialah
Selain menggunakan rumus diatas terdapat pula metode sarus dalam menghitung determinan matriks.
Untuk lebih jelasnya mampu anda simak bagan metode sarus dibawah ini
Jika terdapat matriks A maka selanjutnya anda harus mencari determinan matriksnya, maka mampu menggunakan metode sarus sehingga menerima model penghitungan matriks berupa:
Untuk lebih jelasnya mampu anda simak pola metode sarus matriks dibawah ini:
Dalam mencari determinan matriks tidak hanya menggunakan dua metode diatas. Terdapat metode lain pengoperasian matriks yaitu berupa metode ekspansi baris maupun kolom.
Disamping ini terdapat sebuah matriks B yang akan dicari determinannya.
Dengan begitu anda mampu menggunakan metode ekspansi baris maupun kolom. Dengan menggunakan metode ini akan menghasilkan sususan berupa:
Determinan Matriks |
Selain menggunakan rumus diatas terdapat pula metode sarus dalam menghitung determinan matriks.
Determinan Matriks |
Skema Metode Sarus pada matriks |
cara menghitung matriks |
Penghitungan diatas ini tidak berhenti begitu saja lantaran yakni kita harus mengalikan masing masing diagonal yang telah saya beri garis kuning dan biru diatas. Kemudian untuk perhitungan operasi matriks pada garis kuning mampu anda jumlahkan. Namun untuk penghitungan pada garis biru mampu ada kurangkan. Hasil kedua garis tersebut selanjutnya mampu anda kurangkan mirip pada gambar dibawah ini.
Untuk lebih jelasnya mampu anda simak pola metode sarus matriks dibawah ini:
Dalam mencari determinan matriks tidak hanya menggunakan dua metode diatas. Terdapat metode lain pengoperasian matriks yaitu berupa metode ekspansi baris maupun kolom.
Disamping ini terdapat sebuah matriks B yang akan dicari determinannya.
Dengan begitu anda mampu menggunakan metode ekspansi baris maupun kolom. Dengan menggunakan metode ini akan menghasilkan sususan berupa:
Baca juga : Macam Simetri Lipat dan Simetri Putar Bangun Datar
Rumus Matriks Singular
Untuk jenis operasi matriks selanjutnya terdapat matriks singular yang memiliki angka determinannya 0. Dibawah ini telah saja sajikan pola penghitungan matriks singular.
Rumus Matriks Singular |
Rumus Matriks Inverse
Matriks invers tersebut memiliki arti kebalikan. Maka invers matriks memiliki arti pembalikan elemen elemen yang terdapat dalam sebuah matriks. Invers matriks ini juga berfungsi untuk memecahkan persamaan sistem linear maupun persamaan operasi matriks.
Rumus Matriks Inverse |
Jika A merupakan sebuah matriks dan anda harus mencari nilai inversnya maka menghasilkan sebuah rumus matriks yaitu:
Dalam sebuah penghitungan invers matriks terdapat beberapa sifat yang perlu anda ketahui. Berikut sifatnya ialah:
Demikianlah penjelasan operasi matriks beserta contohnya yang mampu saya berikan. Dengan mengetahui setiap tipe dan rumus pada matriks maka anda mampu dengan praktis mengerjakan soal soal matriks tersebut. Semoga artikel ini mampu menjadi referensi untuk anda, Terima kasih.
Belum ada Komentar untuk "Rumus Operasi Matriks (Matriks Inverse, Transpose, Dan Identitas) Beserta Contohnya"
Posting Komentar