Soal Dan Pembahasan Untuk Persiapan Sbmptn 2018
Hampir seminggu ini galau mau menulis apa di blog. Selain alasannya ialah semangat yang lagi menurun juga alasannya ialah lagi kering ide. Ditambah lagi seminggu ini nunggui belum remaja USBN di kelas,suntuk,coba-coba buka laptop,alhamdulillah terbersit dalam pikiran untuk menulia acuan soal dan pembahasan soal-soal selevel soal SBMPTN. Semoga ukiran pena berikut bermanfaat bagi yang memerlukan.
Nomor 1
Jika $a$ dan $b$ yaitu akar-akar dari persamaan $\begin{align*}(3x^{2}+4x-4)^{2x^{2}-x+7}=(3x^{2}+4x-4)^{x^{2}+x+3}\end{align*}$
dengan $a>b$,maka nilai $\log_{4}3a-\log_{8}(-b)$ yaitu ....
A. $\begin{align*}\frac{3}{2}\end{align*}$
B. $\begin{align*}2\end{align*}$
C. $\begin{align*}\frac{1}{7}\end{align*}$
D. $\begin{align*}\frac{1}{6}\end{align*}$
E. $\begin{align*}\frac{1}{5}\end{align*}$
Pembahasan
Kita tahu bahwa $2x^{2}-2x+7$ dan $x^{2}+x+3$ akan selalu definit aktual untuk setiap $x$ himpunan bilangan real.
Sehingga persamaan eksponen pada soal memenuhi bentuk: $h(x)^{f(x)}=h(x)^{g(x)}$,dengan $f(x)>0$ dan $g(x)>0$ maka $h(x)=0$.
$\begin{align*}3x^{2}+4x-4&=0\\(3x-2)(x+2)&=0\end{align*}$
$\begin{align*}x=\frac{2}{3}\end{align*} $atau $x=-2$.
Jadi,$\begin{align*}a=\frac{2}{3}\end{align*}$ dan $b= -2$.
Dengan demikian, kita peroleh:
$\begin{align*}\log_{4}3a-\log_{8}(-b)&=\frac{1}{2}\log_{2}\left(3\times \frac{2}{3}\right)-\frac{1}{3}\log_{2}(2)\\&=\frac{1}{2}\log_{2}2-\frac{1}{3}\log_{2}2\\&=\frac{1}{2}-\frac{1}{3}\\&=\frac{1}{6}\end{align*}$
dengan $a>b$,maka nilai $\log_{4}3a-\log_{8}(-b)$ yaitu ....
A. $\begin{align*}\frac{3}{2}\end{align*}$
B. $\begin{align*}2\end{align*}$
C. $\begin{align*}\frac{1}{7}\end{align*}$
D. $\begin{align*}\frac{1}{6}\end{align*}$
E. $\begin{align*}\frac{1}{5}\end{align*}$
Pembahasan
Kita tahu bahwa $2x^{2}-2x+7$ dan $x^{2}+x+3$ akan selalu definit aktual untuk setiap $x$ himpunan bilangan real.
Sehingga persamaan eksponen pada soal memenuhi bentuk: $h(x)^{f(x)}=h(x)^{g(x)}$,dengan $f(x)>0$ dan $g(x)>0$ maka $h(x)=0$.
$\begin{align*}3x^{2}+4x-4&=0\\(3x-2)(x+2)&=0\end{align*}$
$\begin{align*}x=\frac{2}{3}\end{align*} $atau $x=-2$.
Jadi,$\begin{align*}a=\frac{2}{3}\end{align*}$ dan $b= -2$.
Dengan demikian, kita peroleh:
$\begin{align*}\log_{4}3a-\log_{8}(-b)&=\frac{1}{2}\log_{2}\left(3\times \frac{2}{3}\right)-\frac{1}{3}\log_{2}(2)\\&=\frac{1}{2}\log_{2}2-\frac{1}{3}\log_{2}2\\&=\frac{1}{2}-\frac{1}{3}\\&=\frac{1}{6}\end{align*}$
Nomor 2
Jika garis singgung parabola $y=4x - x^{2}$ di titik $(1,3)$ juga merupakan garis singgung parabola $y=x^{2}-6x+k$,maka nilai dari $10-\sqrt{k-1}$ yaitu ....
A. $\begin{align*}2\end{align*}$
B. $\begin{align*}3\end{align*}$
C. $\begin{align*}4\end{align*}$
D. $\begin{align*}5\end{align*}$
E. $\begin{align*}6\end{align*}$
Pembahasan
Langkah pertama yaitu mencari persamaan garis singgung kedua parabola yang mana garis singgung kedua parabola yaitu sama.
$m=y'\rightarrow m=4-2x$.
Untuk $x=1$ maka $m=4-2(1)=2$
Sehingga persamaan garis singgungnya:
$\begin{align*}y-b&=m(x-a)\\y-3&=2(x-1)\\y-3&=2x-2\\y&=2x+1\end{align*}$
Oleh alasannya ialah PGS kedua parabola sama,maka:
$\begin{align*}y_{1}&=y_{2}\\ x^{2}-6x+k&=2x+1\\ x^{2}-8x+k-1&=0\\ \end{align*}$
A. $\begin{align*}2\end{align*}$
B. $\begin{align*}3\end{align*}$
C. $\begin{align*}4\end{align*}$
D. $\begin{align*}5\end{align*}$
E. $\begin{align*}6\end{align*}$
Pembahasan
Langkah pertama yaitu mencari persamaan garis singgung kedua parabola yang mana garis singgung kedua parabola yaitu sama.
$m=y'\rightarrow m=4-2x$.
Untuk $x=1$ maka $m=4-2(1)=2$
Sehingga persamaan garis singgungnya:
$\begin{align*}y-b&=m(x-a)\\y-3&=2(x-1)\\y-3&=2x-2\\y&=2x+1\end{align*}$
Oleh alasannya ialah PGS kedua parabola sama,maka:
$\begin{align*}y_{1}&=y_{2}\\ x^{2}-6x+k&=2x+1\\ x^{2}-8x+k-1&=0\\ \end{align*}$
Karena menyinggung maka $D=0$, sehingga diperoleh nilai $k$ sebagai berikut.
$\begin{align*} D&=0\\ b^{2}-4ac&=0\\ (-8)^{2}-4(1)(k-1)&=0\\ 64-4k+4&=0\\ -4k&=-68\\ k&=17 \end{align*}$
Jadi,$\begin{align*} 10-\sqrt{k-1}&=10-\sqrt{17-1}\\&=10-4\\&=6 \end{align*}$
Nomor 3
Diketahui sisa pembagian suku banyak $f(x)-g(x)$ oleh $x^{2}+x-2$ yaitu $x$.Jika sisa pembagian suku banyak $f(x)+g(x)$ oleh $x^{2}-3x+2$ yaitu $x+1$,maka sisa pembagian $f^{2}(x)+g^{2}(x)$ oleh $x-1$ yaitu ....
A. $4$
B. $1$
C. $\begin{align*}\frac{1}{4}\end{align*}$
D. $\begin{align*}\frac{5}{4}\end{align*}$
E. $\begin{align*}\frac{5}{2}\end{align*}$
Pembahasan
$f(x)-g(x)$ dibagi $x^{2}+x-2$ memberi sisa $x$
$x^{2}+x-2=(x+2)(x-1)$ maka $x=-2$ atau $x=1$.
$\begin{align*} \textrm{untuk}\;x&=1\;\;\;\rightarrow\;\;\;\;\;\; f(1)-g(1)=1\;\;\;\;\;\;\;....(1)\\ \textrm{untuk}\;x&=-2\rightarrow f(-2)-g(-2)=-2\;\;\;\;\;....(2) \end{align*}$
$f(x)+g(x)$ dibagi $x^{2}-3x+2$ memberi sisa $x+14$.
$x^{2}-3x+2=(x-1)(x-2)$ maka $x=1$ atau $x=2$
$\begin{align*} \textrm{Untuk}\;x&=1\rightarrow f(1)+g(1)=2\;\;\;\;....(3)\\ \textrm{Untuk}\;x&=2\rightarrow f(2)+g(2)=3\;\;\;\;....(4) \end{align*}$
Jika $f^{2}(x)+g^{2}(x)$ dibagi $x-1$,maka sisanya $f^{2}(1)+g^{2}(1)$.
Dari persamaan $(1)$ dan $(3)$, diperoleh:
$\begin{align*} f(1)-g(1)&=1\\ (f(1)-g(1))^{2}&=1^{2}\\ f^{2}(1)-2f(1).g(1)+g^{2}(1)&=1\;\;\;\;\;...(5)\\ f(1)+g(1)&=2\\ (f(1)+g(1))^{2}&=2^{2}\\ f^{2}(1)+2f(1).g(1)+g^{2}(1)&=4\;\;\;\;\;...(6)\\ \end{align*}$
Jumlahkan persamaan $(5)$ dan persamaan $(6)$ diperoleh:
$\begin{align*} 2f^{2}(1)+2g^{2}(1)&=5\\ f^{2}(1)+g^{2}(1)&=\frac{5}{2} \end{align*}$
Nomor 4
Jika $m$ dan $n$ yaitu bilangan-bilangan real dan fungsi $f(x)=nx^{10}-3x^{8}-mx^{5}+20$ memenuhi $f'(1)=f'(-1)=3$, maka nilai $40m-60n$ yaitu ....
A. $156$
B. $144$
C. $10$
D. $-20$
E. $-156$
Pembahasan
$\begin{align*} f(x)&=nx^{10}-3x^{8}-mx^{5}+20\\ f'(x)&=10nx^{9}-24x^{7}-5mx^{4}\\ \end{align*}$
Pembahasan
$\begin{align*} f(x)&=nx^{10}-3x^{8}-mx^{5}+20\\ f'(x)&=10nx^{9}-24x^{7}-5mx^{4}\\ \end{align*}$
Kita tahu bahwa $f(1)=f(-1)=3$, maka diperoleh:
$\begin{align*} f'(1)&=3\\ 10n(1)^{9}-24(1)^{7}-5m(1)^{4}&=3\\ 10n-24-5m&=3\\ 10n-5m&=27\;\;\;\;\;\;.....(1)\\ f(-1)&=3\\ 10n(-1)^{9}-24(-1)^{7}-5m(-1)^{4}&=3\\ -10n+24-5m&=3\\ -10n-5m&=-21\\ 10n+5m&=21\;\;\;\;\;\;.....(2) \end{align*}$
Eliminasi kedua persamaan maka diperoleh nilai $\begin{align*} m=-\frac{3}{10} \end{align*}$ dan $\begin{align*} n=-\frac{48}{20} \end{align*}$.
Jadi,
$\begin{align*} 40m-60n&=40\left ( -\frac{3}{10} \right )-60\left ( \frac{48}{20} \right )\\ &=-12-144\\ &=-156 \end{align*}$
Soal 5
Jika $m$ merupakan bilangan real positif, serta $3m+6,4m-2$, dan $m+1$ yaitu berturut-turut suku ke-$10$, ke-$11$, dan ke-$12$ suatu barisn geometri,maka jumlah suku-$8$ dan ke-$9$ yaitu ....
A. $48$
B. $54$
C. $72$
D. $144$
E. $168$
Pembahasan
Barisan Geometri, berlaku sifat:
$\begin{align*}\frac{U_{2}}{U_{1}}&=\frac{U_{3}}{U_{2}}\\U_{2}^{2}&=U_{1}\times U_{3}\\(4m-2)^{2}&=(3m+6)(m+1)\\16m^{2}-16m+4&=3m^{2}+9m+6\\13m^{2}-25m-2&=0\\(m-2)(13m+1)&=0\\m=-\frac{1}{13}\;\; V\;\; m&=2\end{align*}$
Oleh alasannya ialah $m$ bilangan real aktual maka nilai $m=2$ yang memenuhi.
Rasio Barisan Geometri tersebut sebagai berikut.
$\begin{align*}r&=\frac{U_{2}}{U_{1}}\\&=\frac{4m-2}{3m+6}\\&=\frac{4.2-2}{3.2+6}\\&=\frac{1}{2}\end{align*}$
Suku Pertama $a$
$\begin{align*}U_10&=12\\ar^{9}&=12\\a\left(\frac{1}{2}\right)&=12\\a&= 6144\end{align*}$
Jumlah $U_{8}$ dan $U_{9}
$\begin{align*}U_{8}+U_{9}&=ar^{7}+ar^{8}\\&=ar^{7}(1+r)\\&=6144\left(\frac{1}{2}\right)^{7}\left(1+\frac{1}{2}\right)\\&=144\end{align*}$
A. $48$
B. $54$
C. $72$
D. $144$
E. $168$
Pembahasan
Barisan Geometri, berlaku sifat:
$\begin{align*}\frac{U_{2}}{U_{1}}&=\frac{U_{3}}{U_{2}}\\U_{2}^{2}&=U_{1}\times U_{3}\\(4m-2)^{2}&=(3m+6)(m+1)\\16m^{2}-16m+4&=3m^{2}+9m+6\\13m^{2}-25m-2&=0\\(m-2)(13m+1)&=0\\m=-\frac{1}{13}\;\; V\;\; m&=2\end{align*}$
Oleh alasannya ialah $m$ bilangan real aktual maka nilai $m=2$ yang memenuhi.
Rasio Barisan Geometri tersebut sebagai berikut.
$\begin{align*}r&=\frac{U_{2}}{U_{1}}\\&=\frac{4m-2}{3m+6}\\&=\frac{4.2-2}{3.2+6}\\&=\frac{1}{2}\end{align*}$
Suku Pertama $a$
$\begin{align*}U_10&=12\\ar^{9}&=12\\a\left(\frac{1}{2}\right)&=12\\a&= 6144\end{align*}$
Jumlah $U_{8}$ dan $U_{9}
$\begin{align*}U_{8}+U_{9}&=ar^{7}+ar^{8}\\&=ar^{7}(1+r)\\&=6144\left(\frac{1}{2}\right)^{7}\left(1+\frac{1}{2}\right)\\&=144\end{align*}$
Soal 6
Jika $\begin{align*} p=\left ( \frac{13}{21},\frac{26}{21},\frac{52}{21} \right ) \end{align*}$ yaitu vektor proyeksi $\begin{align*} \overrightarrow{OB} \end{align*}$ pada $\begin{align*} \overrightarrow{OA} \end{align*}$, dimana $A(1,2,2)$ dan $(1,t,t^{2})$ dimana $t>0$, maka nilai dari $t^{3}-1$ yaitu ....
(a) $13$
(b) $26$
(c) $-3$
(d) $2$
(e) $57$
Pembahasan
$\begin{align*} \overrightarrow{p}&=\frac{\overrightarrow{OA}.\overrightarrow{OB}}{\left | \overrightarrow{OB} \right |^{2}}.\overrightarrow{OB}\\ \left ( \frac{13}{21},\frac{26}{21},\frac{52}{21} \right )&=\frac{(1,2,2)(1,t,t^{2})}{\sqrt{(1^{2}+t^{2}+(t^{2})^{2}})^{2}}.(1,t,t^{2})\\ \left ( \frac{13}{21},\frac{26}{21},\frac{52}{21} \right )&=\frac{1+2t+2t^{2}}{1+t^{2}+t^{4}}.(1,t,t^{2})\\ \end{align*}$ Dengan memanfaatkan kesamaan kita peroleh persamaan berikut:
$\begin{align*} 13&=(1+2t+2t^{2})1\\ 13&=1+2t+2t^{2}\\ 0&=2t^{2}+2t-12\\ 0&=t^{2}+t-6\\ 0&=(t-2)(t+3)\\ t&=2\;\;\textrm{atau}\;\;t=-3 \end{align*}$
Oleh alasannya ialah $t>0$, maka nilai $t$ yang memenuhi yaitu $t=3$, dengan demikian nilai dari $\begin{align*} t^{3}-1=3^{3}-1=26 \end{align*}$ .
$\begin{align*} 13&=(1+2t+2t^{2})1\\ 13&=1+2t+2t^{2}\\ 0&=2t^{2}+2t-12\\ 0&=t^{2}+t-6\\ 0&=(t-2)(t+3)\\ t&=2\;\;\textrm{atau}\;\;t=-3 \end{align*}$
Oleh alasannya ialah $t>0$, maka nilai $t$ yang memenuhi yaitu $t=3$, dengan demikian nilai dari $\begin{align*} t^{3}-1=3^{3}-1=26 \end{align*}$ .
Soal 7
Diketahui $f(x)=x^{2017}+x^{2016}+...+x^{2}+x$, $\begin{align*} A=\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \end{align*}$, dan $\begin{align*} f(A)=\begin{bmatrix} a & c \\ b & d \end{bmatrix} \end{align*}$. Nilai dari $a+b+c-d=....$
(a) $3\times 2018\times 2017$
(b) $5\times 2014\times 2016$
(c) $4\times 2015\times 2017$
(d) $3\times 2016\times 2018$
(e) $2\times 2017\times 2019$
(b) $5\times 2014\times 2016$
(c) $4\times 2015\times 2017$
(d) $3\times 2016\times 2018$
(e) $2\times 2017\times 2019$
Pembahasan
Pada kasus ini, kita diberikan fungsi $f$, yaitu:
$f(x)=x^{2017}+x^{2016}+...+x^{2}+x$
Substitusi $x=A$ ke $f$ kita peroleh fungsi $f$ dalam variabel $A$ sebagai berikut.
$f(A)=A^{2017}+A^{2016}+...+A^{2}+x$
dimana $A$ yaitu suatu matrik dan$\begin{align*} f(A)=\begin{bmatrix} a &c \\ b& d \end{bmatrix} \end{align*}$
Kita butuh triks khusus untuk merampungkan kasus ini. Perhatikan
$\begin{align*} A^{{\color{Red} 2}}&=A.A=\begin{bmatrix} 1&4 \\ 0 & 1 \end{bmatrix}.\begin{bmatrix} 1 & 4\\ 0&1 \end{bmatrix}=\begin{bmatrix} 1 &{\color{Red} 2}.4 \\ 0 & 1 \end{bmatrix}\\ A^{{\color{Red} 3}}&=A^{2}A=\begin{bmatrix} 1 &2.4 \\ 0&1 \end{bmatrix}.\begin{bmatrix} 1 &4 \\ 0& 1 \end{bmatrix}=\begin{bmatrix} 1 &{\color{Red} 3}.4 \\ 0& 1 \end{bmatrix}\\ .\\ .\\ .\\ A^{{\color{Red} 2}{\color{Red} 0}{\color{Red} 1}{\color{Red} 7}}&=\begin{bmatrix} 1 & {\color{Red} 2}{\color{Red} 0}{\color{Red} 1}{\color{Red} 7}.4\\ 0& 1 \end{bmatrix} \end{align*}$
$f(x)=x^{2017}+x^{2016}+...+x^{2}+x$
Substitusi $x=A$ ke $f$ kita peroleh fungsi $f$ dalam variabel $A$ sebagai berikut.
$f(A)=A^{2017}+A^{2016}+...+A^{2}+x$
dimana $A$ yaitu suatu matrik dan$\begin{align*} f(A)=\begin{bmatrix} a &c \\ b& d \end{bmatrix} \end{align*}$
Kita butuh triks khusus untuk merampungkan kasus ini. Perhatikan
$\begin{align*} A^{{\color{Red} 2}}&=A.A=\begin{bmatrix} 1&4 \\ 0 & 1 \end{bmatrix}.\begin{bmatrix} 1 & 4\\ 0&1 \end{bmatrix}=\begin{bmatrix} 1 &{\color{Red} 2}.4 \\ 0 & 1 \end{bmatrix}\\ A^{{\color{Red} 3}}&=A^{2}A=\begin{bmatrix} 1 &2.4 \\ 0&1 \end{bmatrix}.\begin{bmatrix} 1 &4 \\ 0& 1 \end{bmatrix}=\begin{bmatrix} 1 &{\color{Red} 3}.4 \\ 0& 1 \end{bmatrix}\\ .\\ .\\ .\\ A^{{\color{Red} 2}{\color{Red} 0}{\color{Red} 1}{\color{Red} 7}}&=\begin{bmatrix} 1 & {\color{Red} 2}{\color{Red} 0}{\color{Red} 1}{\color{Red} 7}.4\\ 0& 1 \end{bmatrix} \end{align*}$
Dengan demikian:
$\begin{align*} f(A)&=\begin{bmatrix} a & c\\ b&d \end{bmatrix}\\ A^{2017}+A^{2016}+...+x^{2}+x&=\begin{bmatrix} a & c\\ b&d \end{bmatrix}\\ \begin{bmatrix} 1 & 2017.4\\ 0&1 \end{bmatrix}+ \begin{bmatrix} 1 & 2016.4\\ 0&1 \end{bmatrix}+...+\begin{bmatrix} 1 & 2.4\\ 0&1 \end{bmatrix}+\begin{bmatrix} 1 & 4\\ 0&1 \end{bmatrix}&=\begin{bmatrix} a & c\\ b&d \end{bmatrix}\\ \begin{bmatrix} 2017 &4(1+2+...+2016+2017) \\ 0&2017 \end{bmatrix}&=\begin{bmatrix} a & c\\ b&d \end{bmatrix} \end{align*}$
Berdasarkan kesamaan matriks, maka diperoleh: $\begin{align*} a=2017,\;b=0,\;c=2\times207\times 2019,\;\;\textrm{dan}\;\;d=2017 \end{align*}$.
Jadi,
$\begin{align*} a+b+c-d&=2017+0+(2\times2017\times 2019)-2017\\ &=2\times2017\times 2019 \end{align*}$
Soal 8
Jika $b,c\neq 0$ dan $\begin{align*} \lim_{x\rightarrow a}\frac{\textrm{sin}(6x-6a)\textrm{tan}b(x-a)}{\textrm{cos}c(x-a)-1}=d \end{align*}$, maka nilai $b=....$
$\begin{align*} &\textrm{A}. \;b=-\frac{1}{2}dc^{2}\\ &\textrm{B}. \;b=-\frac{1}{12}dc^{2}\\ &\textrm{C}. \;b=-\frac{1}{6}dc^{2}\\ &\textrm{D}. \;b=6dc^{2}\\ &\textrm{E}. \;b=12dc^{2} \end{align*}$ Pembahasan
$\begin{align*} \lim_{x\rightarrow a}\frac{\textrm{sin}(6x-6a)\textrm{tan}b(x-a)}{\textrm{cos}c(x-a)-1}&=d\\ \lim_{x\rightarrow a}\frac{\textrm{sin}(6x-6a)\textrm{tan}b(x-a)}{-(1-cosc(x-a))}&=d\\ \lim_{x\rightarrow a}\frac{6(x-a)b(x-a)}{-\left ( \frac{1}{2}c^{2}(x-a)^{2} \right )}&=d\\ \frac{6b}{-\frac{1}{2}}c^{2}&=d\\ b&=-\frac{1}{2}dc^{2} \end{align*}$ Soal 9
Terdapat 7 kartu identik yang sisi depannya bergambar $King$ dan gambar sisi belakangnya $Queen$. Jika 7 kartu tersebut dilempar ke atas secara bersamaan dan jatuh ke tanah, maka peluang muncul maksimal $4$ gambar $Queen$ yaitu ....
A. $\begin{align*}\frac{91}{128}\end{align*}$
B. $\begin{align*}\frac{63}{128}\end{align*}$
C. $\begin{align*}\frac{64}{128}\end{align*}$
D. $\begin{align*}\frac{99}{128}\end{align*}$
E. $\begin{align*}\frac{100}{128}\end{align*}$
A. $\begin{align*}\frac{91}{128}\end{align*}$
B. $\begin{align*}\frac{63}{128}\end{align*}$
C. $\begin{align*}\frac{64}{128}\end{align*}$
D. $\begin{align*}\frac{99}{128}\end{align*}$
E. $\begin{align*}\frac{100}{128}\end{align*}$
Pembahasan
Oleh alasannya ialah maksimal muncul $4Q$, maka kemungkinan-kemungkinannya yaitu:
- $4Q\;3K\rightarrow \frac{7!}{4!3!}=35$
- $3Q\;4K\rightarrow \frac{7!}{3!4!}=35$
- $2Q\;5K\rightarrow \frac{7!}{2!5!}=21$
- $1Q\;6K\rightarrow \frac{7!}{1!6!}=7$
- $0Q\;7K\rightarrow \frac{7!}{7!}=1$
Jadi, $\begin{align*} P(A)=\frac{n(A)}{n(S)}=\frac{99}{128} \end{align*}$
Apabila dalam ukiran pena ini ditemukan kesalahan baik itu ukiran pena atau pun pembahasannya,mohon segera dikomentari di kolom komentar di bawah atau pembaca mampu hubungi penulis melalui e-mail:yanfardian875@gmail.com atau fb: Yan Fardian.
Belum ada Komentar untuk "Soal Dan Pembahasan Untuk Persiapan Sbmptn 2018"
Posting Komentar