40 Soal Dan Pembahasan Unbk Matematika Sma Ipa Tahun 2018 (*Simulasi Unbk 2020)

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)Ujian Nasional tahun 2020 pelaksanaannya tidak akan jauh berbeda dengan tahun 2018 yaitu berbasis komputer. Setelah terbukti UNBK (Ujian Nasional Berbasis Komputer) bisa menekan angka kecurangan UN dengan sangat baik maka untuk seterusnya kemungkinan UNBK ini tidak akan dirubah.

Masalah UNBK yang harus segera diantisipasi berikutnya ialah komputer yang akan digunakan di sekolah, dominan sekolah yang melakukan UNBK masih kekurangan komputer untuk digunakan pada saat UNBK. Biasanya untuk mengatasi problem kekurangan komputer pada hari-H pihak sekolah akan meminjam dari pihak-pihak yang tidak menyalahi peraturan yang ada.

Masalah berikut yang tidak kalah pentingnya harus diantisipasi biar pelaksanaan UNBK sanggup berlangsung menyerupai yang diperlukan ialah tingkat kesulitan soal. Masih jelas dalam ingatan kita bahwa banyak meme yang beredar tetang sulitnya soal-soal UN yang berbasis komputer. Meskipun sebetulnya sulit itu relatif tetapi pada UN tahun 2018 kemarin banayk anak-anak mnegeluhkan sulitnya soal UNBK.

Salah satu cara untuk mengurangi rasa takut dalam menghadapi ujian-ujian dan terkhusus UNBK ialah kita harus punya persiapan dalam menghadapi soal-soal Ujian Nasional. Berikut kita coba latihan soal Simulasi UNBK Matematika IPA, mari berlatih dan berdiskusi;
1. Panitia lomba olimpiade matematika membuat nomor akseptor yang disusun dari angka $1,\ 3,\ 3,\ 4,\ \text{dan}\ 7$. Jika nomor-nomor tersebut disusun berdasarkan kodenya mulai dari yang terkecil hingga dengan yang terbesar, nomor akseptor $43137$ berada pada urutan ke-...
$(A)\ 40$
$(B)\ 42$
$(C)\ 44$
$(D)\ 85$
$(E)\ 86$
Alternatif Pembahasan:

Dari angka $1,\ 3,\ 3,\ 4,\ \text{dan}\ 7$ akan disusun sebuah nomor yang berurutan dari terkecil hingga yang terbesar.
Dimulai dari yang terkecil;
Jika angka $1$ didepan angka berikutnya $3,\ 3,\ 4,\ \text{dan}\ 7$, banyak kemungkinan susunan ialah memakai permutasi bila ada unsur yang sama.
$P_{(p,q,r)}^{n}=\frac{n!}{p!\cdot q! \cdot r!}$
$P_{(2,1,1)}^{4}=\frac{4!}{2!\cdot 1! \cdot 1!}=\frac{24}{2}=12$

Jika angka $3$ didepan angka berikutnya $1,\ 3,\ 4,\ \text{dan}\ 7$, banyak kemungkinan susunan ialah memakai permutasi tidak ada unsur yang sama.
$P_{r}^{n}=\frac{n!}{(n-r)!}$
$P_{4}^{4}=\frac{4!}{(4-4)!}=24$

Jika angka $41$ didepan angka berikutnya $3,\ 3,\ \text{dan}\ 7$, banyak kemungkinan susunan ialah memakai permutasi bila ada unsur yang sama.
$P_{(2,1)}^{3}=\frac{3!}{2!\cdot 1!}$
$P_{(2,1)}^{3}=\frac{6}{2}=3$

Jika angka $43$ didepan angka berikutnya $1$, $3$ dan $7$,

Kita sudah hingga pada susunan $43137$, yang berada pada urutan ke- $12+24+3+1=40$

$\therefore$ Pilihan yang sesuai ialah $(A).\ 40$

2. Pada suatu segitiga siku-siku diketahui nilai $cos^{2}A=\frac{8}{10}$ dengan $A$ ialah sudut lancip. Nilai dari $tan\ A= \cdots$
$(A)\ -1$
$(B)\ -\dfrac{1}{2}$
$(C)\ \dfrac{1}{4}$
$(D)\ \dfrac{1}{2}$
$(E)\ 1$
Alternatif Pembahasan:

Dari nilai $cos^{2}A=\frac{8}{10}$ sanggup kita peroleh nilai $cos\ A$,
$cos\ A= \pm \sqrt{\frac{8}{10}}$
$cos\ A= \pm \frac{\sqrt{4}}{\sqrt{5}}$
Karena $A$ ialah sudut lancip maka $cos\ A= \frac{2}{\sqrt{5}}$.

Dari identitas trigonometri $sin^{2}A+cos^{2}A=1$, atau bisa juga dengan pinjaman segitiga siku-siku kita bisa dapatkan nilai $sin\ A$.
$sin^{2}A=1-cos^{2}A$
$sin^{2}A=1-\frac{8}{10}$
$sin^{2}A=\frac{2}{10}$
$sin\ A=\sqrt{\frac{1}{5}}$
$sin\ A=\frac{1}{\sqrt{5}}$

$tan\ A= \frac{sin\ A}{cos\ A}$
$tan\ A= \frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}=\frac{1}{2}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ \dfrac{1}{2}$

3. Persamaan garis singgung kurva $y=x^{2}+4x-3$ yang tegak lurus dengan garis $x+2y-10=0$ adalah...
$(A)\ 2x+y+4=0$
$(B)\ 2x-y-4=0$
$(C)\ x+2y-4=0$
$(D)\ x+2y+4=0$
$(E)\ -x+2y-4=0$
Alternatif Pembahasan:

Persamaan garis secara umum ialah $y-y_{1}=m \left( x-x_{1} \right)$
Gradien garis $x+2y-10=0$ ialah $m=-\frac{1}{2}$

Persamaan garis singgung kurva tegak lurus dengan garis $x+2y-10=0$ maka:
$m_{1} \cdot m_{2}=-1$
$-\frac{1}{2} \cdot m_{2}=-1$
$m_{2}=2$

Persamaan garis singgung kurva $y=x^{2}+4x-3$ gradiennya ialah $m_{2}=2$ dan $m=y'$, maka:
$2x+4=2$
$2x=-2$
$x=-1$
Saat $x=-1$ kita peroleh $y=(-1)^{2}+4(-1)-3=1-4-3=-6$

Persamaan garis singgung kurva adalah
$y-y_{1}=m \left( x-x_{1} \right)$
$y-(-6)=2 \left( x-(-1) \right)$
$y+6=2 \left( x+1 \right)$
$y+6=2x+2$
$y-2x+4=0$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 2x-y-4=0$

4. Persamaan kuadrat $x^{2}+(m-1)x+9$ memiliki akar-akar real berbeda. Batasan nilai $m$ yang memenuhi adalah...
$(A)\ -5 \lt m \lt 7$
$(B)\ m \lt -5\ \text{atau}\ m \gt 7$
$(C)\ m \lt -7\ \text{atau}\ m \gt 5$
$(D)\ -7 \lt m \lt 5$
$(E)\ -7 \lt m \lt -5$
Alternatif Pembahasan:

Agar persamaan kuadrat memiliki akar-akar real berbeda, maka $D \gt 0$ dimana $D=b^{2}-4ac$.
$D=(m-1)^{2}-4(1)(9)$
$D=m^{2}-2m+1-36$
$D=m^{2}-2m-35$
$m^{2}-2m-35 \gt 0$
$(m+5)(m-7) \gt 0$
$m \lt -5\ \text{atau}\ m\ \gt 7$

Jika masih kesulitan merampungkan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat

$\therefore$ Pilihan yang sesuai ialah $(B)\ m \lt -5\ \text{atau}\ m\ \gt 7$

5. Kamar Akbar berbentuk balok dengan ukuran panjang : lebar : tinggi=5:5:4. Di langit-langit kamar terdapat lampu yang letaknya tepat pada pusat bidang langit-langit. Pada salah dinding kamar dipasang saklar yang letaknya tepat di tengah-tengah dinding. Jarak saklar ke lampu adalah...
$(A)\ \frac{3}{2}\ m $
$(B)\ \frac{5}{2}\ m $
$(C)\ \frac{1}{2}\sqrt{34}\ m $
$(D)\ \frac{1}{2}\sqrt{41}\ m $
$(E)\ \sqrt{14}\ m $
Alternatif Pembahasan:

Ukuran kamar Akbar yang berbentuk balok masih dalam bentuk perbandingan, sehingga kita bisa sanggup memisalkan ukuran panjangnya menjadi $panjang=5x$; $lebar=5x$ dan $tinggi=4x$.

Lampu berada pada titik tengah langit-langit dan saklar berada pada titik tengah dinding, citra saklar dan lampu kurang lebih menyerupai gambar berikut;

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Jarak lampu dan saklar adalah;
$d=\sqrt{(\frac{5}{2}x)^{2}+(2x)^{2}}$
$d=\sqrt{\frac{25}{4}x^{2}+4x^{2}}$
$d=\sqrt{\frac{25}{4}x^{2}+\frac{16}{4}x^{2}}$
$d=\sqrt{\frac{41}{4}x^{2}}$
$d=\frac{1}{2}\sqrt{41}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ \frac{1}{2}\sqrt{41}$

6. Perhatikan grafik fungsi kuadrat berikut!
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Koordinat titik potong grafik dengan sumbu $X$ adalah...
$(A)\ (1,0)\ \text{dan}\ (3,0)$
$(B)\ (2,0)\ \text{dan}\ (-3,0)$
$(C)\ (2,0)\ \text{dan}\ (1,0)$
$(D)\ (4,0)\ \text{dan}\ (1,0)$
$(E)\ (4,0)\ \text{dan}\ (2,0)$
Alternatif Pembahasan:

Untuk memilih titik potong kurva dengan sumbu $X$, maka kita perlu ketahui persamaan kurva. Kurva pada gambar melalui titik puncak $(2,-1)$ dan sebuah titik sembarang $(0,3)$.
Jika diketahui Titik Puncak $(x_{p},y_{p})$ dan sebuah titik sembarang $(x,y)$ maka FK adalah:
$y=a\left (x -x_{p}\right)^{2}+y_{p}$
$3=a\left (0 -2\right)^{2}-1$
$3=4a-1$
$4=4a$
$a=1$
Persamaan kurva
$y=1\left (x -2\right)^{2}-1$
$y=x^{2}-4x+4-1$
$y=x^{2}-4x+3$
$y=(x-3)(x-1)$
Memotong sumbu $X$ di $(1,0)\ \text{dan}\ (3,0)$

Jika masih mau membahas lebih banyak tentang fungsi kuadrat: Matematika Dasar: Fungsi Kuadrat [Soal SBMPTN dan Pembahasan]

$\therefore$ Pilihan yang sesuai ialah $(A)\ (1,0)\ \text{dan}\ (3,0)$

7. Sebuah toko buku menjual 2 buku gambar dan 8 buku tulis seharga $Rp48.000,00$, sedangkan untuk 3 buku gambar dan 5 buku tulis seharga $Rp37.000,00$. Jika Adi membeli 1 buku gambar dan 2 buku tulis di toko itu, ia harus membayar sebesar...
$(A)\ Rp24.000,00$
$(B)\ Rp20.000,00$
$(C)\ Rp17.000,00$
$(D)\ Rp14.000,00$
$(E)\ Rp13.000,00$
Alternatif Pembahasan:

Pada soal disampaikan bahwa harga 2 buku tulis dan 8 buku gambar ialah $48.000$ dan 3 buku tulis dan 5 buku gambar ialah $37.000$.

Dengan memisalkan $\text{buku tulis}=m$ dan $\text{buku gambar}=n$ maka secara simbol bisa kita tuliskan;
$2m+8n=48.000$ atau $6m+24n=144.000$
$3m+5n=37.000$ atau $6m+10n=74.000$
Dari kedua persamaan diatas dengan mengeliminasi atau substitusi kita peroleh $14n=70.000$ maka $n=5.000$

Untuk $n=5.000$ maka $3m+5(5.000)=37.000$, $m=4.000$.

Harga yang harus dibayar untuk 1 buku gambar dan 2 buku tulis di toko itu ialah $13.000$

$\therefore$ Pilihan yang sesuai ialah $(E)\ Rp13.000,00$

8. Diketahui
$f(x)=\begin{cases}3x-p,\ x\leq 2 \\
2x+1,\ x > 2 \end{cases}$

Agar $\lim\limits_{x \to 2}f(x)$ memiliki nilai, maka $p=...$
Alternatif Pembahasan:

Berdasarkan defenisi limit, biar $\lim\limits_{x \to 2}f(x)$ memiliki nilai maka Limit Kiri = Limit Kanan secara simbol dituliskan $\lim\limits_{x \to 2^{+}}f(x)=\lim\limits_{x \to 2^{-}}f(x)=L$

Limit kanan $\lim_{x\rightarrow 2^{+}}f(x)$
$\lim\limits_{x \to 2^{+}}(2x+1)=2(2)+1=5$

Limit kiri $\lim_{x\rightarrow 2^{-}}f(x)$
$\lim\limits_{x \to 2^{-}}(3x-p)=3(2)-p=6-p$

Berdasarkan defenisi biar $\lim\limits_{x \to 2}f(x)$ memiliki nilai yaitu Limit Kiri = Limit Kanan maka:
$6-p=5$
$6-5=p$
$p=1$

$\therefore$ Jawaban yang sesuai ialah $1$

9. Dalam rangka mempersiapkan diri pada kejuaraan lomba lari tingkat nasional bulan depan, Susanti berlatih setiap hari. Dia menuliskan rata-rata kecepatan larinya setiap hari dalam tabel berikut:
Kecepatan $\left( \frac{cm}{detik} \right)$ Frekuensi
1-2 6
3-4 11
5-6 8
7-8 3
9-10 2
Grafik yang sesuai dengan data diatas sanggup disajikan dalam bentuk...
(A).
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
(B).
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
(C).
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
(D).
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
(E).
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Alternatif Pembahasan:

Berdasarkan data pada tabel yang disajikan dalam bentuk grafik yang paling sesuai ialah gambar (B).

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Pada gambar (B) frekuensi sesuai menyerupai pada tabel, dan pada kecepatan ditampilkan titik tengah dari kecepatan rata-rata yang ada pada tabel.

$\therefore$ Pilihan yang sesuai ialah $(B)$



10. Sebuah tangga memiliki panjang $6\ m$. Tangga tersebut disandarkan pada tembok rumah dengan membentuk sudut $60^{\circ}$ terhadap tanah. Ketinggian tembok yang sanggup dicapai oleh ujung tangga dari permukaan tanah adalah...
$(A)\ 2\sqrt{2}\ m$
$(B)\ 3\sqrt{2}\ m$
$(C)\ 2\sqrt{3}\ m$
$(D)\ 3\sqrt{3}\ m$
$(E)\ 6\sqrt{3}\ m$
Alternatif Pembahasan:

Informasi yang ada pada soal sanggup kita ilustrasikan kurang lebih menyerupai berikut ini;

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Dari gambar bisa kita hubungkan apa yang diinginkan oleh soal yaitu ketinggian tembok yang sanggup dicapai oleh ujung tangga dari permukaan tanah ialah panjang $BC$.

Panjang $BC$ sanggup kita hitung dengan pinjaman defenisi perbandingan trigonometri yaitu sinus;
$sin\ 60^{\circ}=\frac{BC}{AB}$
$\frac{1}{2}\sqrt{3}=\frac{BC}{6}$
$BC=3 \sqrt{3}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 3\sqrt{3}\ m$

11. Diketahui suatu barisan aritmatika dengan $U_{2}=8$ dan $U_{6}=20$. Jumlah $6$ suku pertama barisan tersebut adalah...
$(A)\ 150$
$(B)\ 75$
$(C)\ 50$
$(D)\ 28$
$(E)\ 25$
Alternatif Pembahasan:

Berdasarkan informasi dari soal yaitu barisan aritmetika, maka kita butuh informasi berikut ini;
$U_{n}=a+(n-1)b$
$S_{n}=\frac{n}{2}\left(2a+(n-1)b \right)$

$U_{2}=8\ \rightarrow\ a+b=8$
$U_{6}=20\ \rightarrow\ a+5b=20$
$\begin{array}{c|c|cc}
a+b= 8 & \\
a+5b = 20 & (-) \\
\hline
-4b = -12 & \\
b = 3 & a= 5
\end{array} $

Untuk $b=3$ maka $a=5$, dan $S_{6}$ adalah
$\begin{align}
S_{6} & =\frac{6}{2} \left(2a+(6-1)b \right) \\
&=3 \left(2(5)+(5)(3) \right) \\
&=3 \left(10+15 \right) \\
&=3 \left(25 \right) \\
&=75
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 75$

12. Suatu pabrik gerabah tanah liat memproduksi gerabah melalui dua tahap. Tahap I memakai mesin I untuk mengolah tanah liat menjadi siap cetak. Tahap II memakai mesin II untuk mengolah bahan siap cetak menjadi gerabah. Misalkan $a$ menyatakan jumlah tanah liat dalam satuan karung dan $b$ menyatakan jumlah bahan yang siap cetak. Pada tahap I, $b=f(a)=5a-3$ dan pada tahap II, $g(b)=3b-2$ menyatakan jumlah gerabah yang dihasilkan. Jika satu buah gerabah seharga $Rp6.000,00$ dan terdapat $100$ karung tanah liat, pendapatan pabrik tersebut adalah...
$(A)\ Rp1.788.000,00$
$(B)\ Rp2.982.000,00$
$(C)\ Rp8.922.000,00$
$(D)\ Rp8.934.000,00$
$(E)\ Rp9.042.000,00$
Alternatif Pembahasan:

Berdasarkan informasi dari soal bahwa jumlah gerabah yang dihasilkan tergantung kepada $a$ dan $b$.
Untuk $a=100$ maka jumlah gerabah yang siap cetak adalah:
$b=f(a)=5a-3$
$b=5(100)-3=497$

Untuk $b=497$ maka jumlah gerabah yang dihasilkan adalah:
$g(b)=3b-2$
$g(497)=3(497)-2$
$g(497)=1491-2=1.489$

Untuk $1.489$ gerabah yang dihasilkan maka pendapatan pabrik ialah $1.489 \times 6.000$ ialah $Rp8.934.000,00$

$\therefore$ Pilihan yang sesuai ialah $(D)\ Rp8.934.000,00$

13. Diketahui $g(x)=3-x$ dengan $f(x)=6x^{2}+3x-9$. Jika $h(x)=f(x) \cdot g(x)$, turunan pertama dari $h(x)$ ialah $h'(x)=\cdots$
$(A)\ -6x^{2}+36x$
$(B)\ -6x^{2}+36x+18$
$(C)\ -18x^{2}+30x+18$
$(D)\ 18x^{2}+30x+18$
$(E)\ 18x^{2}-30x-18$
Alternatif Pembahasan:

Turunan pertama dari $h(x)=f(x) \cdot g(x)$ adalah:
$ \begin{align}
h(x) & = f(x) \cdot g(x) \\
h'(x) & = f'(x) \cdot g(x)+f(x) \cdot g'(x) \\
& =(12x+3)(3-x)+(6x^{2}+3x-9)(-1) \\
& =36x+9-12x^{2}-3x-6x^{2}-3x+9 \\
& =-18x^{2}+30x+18
\end{align} $

$\therefore$ Pilihan yang sesuai ialah $(C)\ -18x^{2}+30x+18$

14. Fungsi $f(x)=x^{3}+3x^{2}-9x-7$ turun pada interval...
$(A)\ 1 \lt x \lt 3$
$(B)\ -1 \lt x \lt 3$
$(C)\ -3 \lt x \lt 1$
$(D)\ x \lt -3\ \text{atau}\ x \gt 1$
$(E)\ x \lt -1\ \text{atau}\ x \gt 3$
Alternatif Pembahasan:

Syarat suatu fungsi akan turun ialah turunan pertama kurang dari nol,
turunan pertama $f(x)$ ialah $f'(x)=3x^2+6x-9$
$ \begin{align}
f'(x) & \lt 0 \\
3x^2+6x-9 & \lt 0 \\
x^2+2x-3 & \lt 0 \\
(x+3)(x-1) \lt 0 & \lt 0 \\
\text{diperoleh pembuat nol} \\
x & =-3\ \text{atau} \\
x & =1 \end{align} $

Kesimpulan fungsi $f(x)=x^{3}+3x^{2}-9x-7$ turun pada interval $-3 \lt x \lt 1$

Jika masih kesulitan merampungkan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat

$\therefore$ Pilihan yang sesuai ialah $(C)\ -3 \lt x \lt 1$

15. Fajar sedang berlatih olahraga basket. Tahap pertama yang ia pelajari ialah teknik dribble bola yaitu memantulkan bola kelantai secara berulang-ulang dengan satu tangan.
Fajar memulai mendribble bola dari ketinggian $90\ cm$. Setelah bola menyentuh lantai tingginya bertambah menjadi $\frac{4}{3}$ dari tinggi semula. Jika diketahui tinggi Fajar ialah $175\ cm$ dan ia tidak sanggup mendribble bola melebihi tinggi badannya, maka jarak seluruh lintasan bola dari pukulan pertama hingga bola itu berada pada tangan Fajar untuk dilakukan dribble terakhir adalah...
$(A)\ 8,6\ m$
$(B)\ 6,5\ m$
$(C)\ 5,3\ m$
$(D)\ 4,9\ m$
$(E)\ 3,3\ m$
Alternatif Pembahasan:

Lintasan pantulan bola pada saat Fajar melakukan dribble bola yang dilakukan dari awal hingga akhir, kurang lebih menyerupai berikut ini:

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Dengan memperhatikan citra diatas, lantaran tinggi bola sesudah pantulan kedua ialah $\frac{4}{3}$ dari tinggi sebelumnya maka panjang lintasan adalah
Tinggi awal bola: $90$
Tinggi Setelah Pantulan I: $\frac{4}{3} \times 90=120$
Tinggi Setelah Pantulan II: $\frac{4}{3} \times 120=160$
Tinggi Setelah Pantulan III: $\frac{4}{3} \times 160=213 \frac{1}{3}$
Tinggi sesudah pantulan III ialah $213 \frac{1}{3}$ dan ini sudah melewati tinggi Fajar yang $175$, sehingga sesudah pantulan ke-II ia tidak lagi mendribble bola.

Panjang lintasan keseluruhan ialah $90+120+120+160=490\ cm=4,9\ m$
Soal ini ialah pengembangan deret geometri, bila ingin membahas soal dasar tentang deret geometri, silahkan disimak: Menghitung Deret Geometri Tak Hingga

$\therefore$ Pilihan yang sesuai ialah $(D)\ 4,9\ m$

16. Sudut antara garis $AC$ dengan $DG$ pada kubus $ABCD.EFGH$ dengan rusuk $a\ cm$ adalah...
$(A)\ 30^{\circ}$
$(B)\ 45^{\circ}$
$(C)\ 60^{\circ}$
$(D)\ 75^{\circ}$
$(E)\ 90^{\circ}$
Alternatif Pembahasan:

Sebagai citra soal diatas, kita gambarkan kubus $ABCD.EFGH$ dengan panjang rusuk $a$, garis $DG$ dan garis $AC$, kurang lebih menyerupai berikut ini;

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Berdasarkan gambar diatas, garis $AC$ dan garis $DG$ ialah dua garis bersilangan. Untuk membentuk sudut dua garis yang bersilangan, maka kita harus mengusahakan kedua garis berpotongan pada satu titik. Dengan menggeser salah satu garis atau keduanya sehingga berpotongan pada satu titik.

Untuk problem ini, kita coba geser garis $DG$ ke titik $A$, sehingga garsi $AC$ dan $DG$ berpotongan di titik $A$. Sudut antara garis $AC$ dan $DG$ ialah sudut $CAF$. Sebagai ilustrasi, kurang lebih menyerupai gambar berikut ini;
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Besar sudut $CAF$ bisa kita tentukan dengan pinjaman segitiga $ACF$.

Segitiga $ACF$ ialah segitiga sama sisi lantaran sisi segitiga tersebut ialah diagonal sisi kubus yang besarnya $a\sqrt{2}$. Karena segitiga $ACF$ ialah sama sisi maka besar ketiga sudutnya sama besar yaitu $60^{\circ}$.

Besar sudut antara garis $AC$ dengan $DG$ ialah $\measuredangle CAF=60^{\circ}$
Pada kurikulum 2013 Kompetensi Dasar kemampuan siswa yang diperlukan ialah jarak titik ke titik, garis dan bidang, silahkan disimak soal latihan dimensi tiga pada kurikulum 2013: Matematika Dasar Uji Kompetensi Dimensi Tiga [Buku Kurikulum 2013]

$\therefore$ Pilihan yang sesuai ialah $(C)\ 60^{\circ}$

17. Persamaan garis singgung pada bundar $x^{2}+y^{2}-6x+8y+9=0$ yang tegak lurus dengan garis $4x-3y+7=0$ adalah...
$(A)\ 3x+4y+13=0\ \text{atau}\ 3x+4y+27=0$
$(B)\ 3x+4y-13=0\ \text{atau}\ 3x+4y+27=0$
$(C)\ 3x-4y+13=0\ \text{atau}\ 3x-4y+27=0$
$(D)\ 4x+3y-13=0\ \text{atau}\ 4x+3y+27=0$
$(E)\ 4x+3y+13=0\ \text{atau}\ 4x+3y-27=0$
Alternatif Pembahasan:

Persamaan garis singgung pada bundar yang dicari pada soal ialah PGS bundar bila diketahui gradiennya lantaran garis singgung bundar tegak lurus dengan garis $4x-3y+7=0$.

Garis singgung bundar tegak lurus dengan garis $4x-3y+7=0$ maka gradien garis $4x-3y+7=0$ $(m=\frac{4}{3})$ dikali gradien garis singgung bundar ialah $-1$.

$m \times\ \frac{4}{3}=-1$
$m =-\frac{3}{4}$

Persamaan Garis Singgung Lingkaran $ x^2 + y^2 + Ax + By + C = 0$ bila diketahui gradiennya ialah $y - b = m(x-a) \pm r \sqrt{1 + m^2}$.
Dari persamaan bundar $x^{2}+y^{2}-6x+8y+9=0$ kita peroleh pusat bundar yaitu $(3,-4)$ dan $r = \sqrt{a^2 + b^2 - C}=\sqrt{9 + 16 - 9}=4$.
$\begin{align}
y - b & = m(x-a) \pm r \sqrt{1 + m^2} \\
y +4 & = -\frac{3}{4}(x-3) \pm 4 \sqrt{1 + (-\frac{3}{4})^2} \\
y +4 & = -\frac{3}{4}(x-3) \pm 4 \sqrt{1 + \frac{9}{16}} \\
y +4 & = -\frac{3}{4}(x-3) \pm 4 \sqrt{\frac{25}{16}} \\
y +4 & = -\frac{3}{4}(x-3) \pm 4 \times \frac{5}{4} \\
y +4 & = -\frac{3}{4}(x-3) \pm 5 \, \, \, \, \text{(kali 4)} \\
4y +16 & = -3(x-3) \pm 20 \\
4y+16 & = -3x+9 \pm 20 \\
4y & = -3x+9-16 \pm 20 \\
4y & = -3x-7 \pm 20 \\
\text{(PGS 1) }:4y & = -3x-7+20 \\
4y & = -3x + 13 \\
3x+4y -13 & = 0 \\
\text{(PGS 2) }:4y & = -3x-7-20 \\
4y & = -3x -27 \\
3x+4y +27 & = 0
\end{align} $

Jika masih tertarik untuk berlatih soal bundar yang lain, silahkan disimak : Matematika Dasar: Lingkaran [Soal SBMPTN dan Pembahasan]

$\therefore$ Pilihan yang sesuai ialah $(B)\ 3x+4y-13=0\ \text{atau}\ 3x+4y+27=0$

18. Diketahui $f(x)=2x-1$ dan $(gof)(x)=x-3$. Nilai dari $g^{-1}(-2)$ adalah...
$(A)\ -2$
$(B)\ -1$
$(C)\ 0$
$(D)\ 1$
$(E)\ 2$
Alternatif Pembahasan:

Berdasarkan informmasi pada soal, diketahui $(gof)(x)=x-3$ maka
$g \left (f(x) \right )=x-3$
$g \left (2x-1 \right )=\frac{1}{2}(2x-1)+\frac{1}{2}-3$
$g \left (2x-1 \right )=\frac{1}{2}(2x-1)-\frac{5}{2}$
$g \left (a \right )=\frac{1}{2}(a)-\frac{5}{2}$
invers fungsi $g(a)$ ialah $g^{-1}(a)$ salah satu cara memilih $g^{-1}(a)$ yaitu:
$y=\frac{1}{2}(a)-\frac{5}{2}$
$2y=a-5$
$2y+5=a$
$g^{-1}(a)=2a+5$
$g^{-1}(-2)=2(-2)+5=1$

Jika masih tertarik untuk berlatih soal Fungsi Komposisi Fungsi Invers yang lain, silahkan disimak : Matematika Dasar Tentang FKFI

$\therefore$ Pilihan yang sesuai ialah $(D)\ 1$

19. Dari selembar karton berbentuk persegi yang berukuran sisi $30\ cm$ akan dibuat kotak tanpa tutup, dengan cara menggunting empat persegi di setiap pojok karton, menyerupai pada gambar. Volume kotak terbesar yang sanggup dibuat adalah...
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
$(A)\ 2.000\ cm^{3}$
$(B)\ 3.000\ cm^{3}$
$(C)\ 4.000\ cm^{3}$
$(D)\ 5.000\ cm^{3}$
$(E)\ 6.000\ cm^{3}$
Alternatif Pembahasan:

Dari sebuah persegi akan dibuat sebuah kotak, sehingga Volume ialah Luas Alas $times$ Tinggi, dimana alas kotak berupa persegi dengan panjang sisi $30-2x$ dan tinggi kotak ialah sebesar $x$, sebagai citra ukuran kotak akan tampak pada gambar berikut.

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Dari apa yang kita peroleh diatas, volume kotak dapt kita hitung sebagai berikut;
$V=(30-2x)(30-2x)(x)$
$V=(900-120x+4x^{2})(x)$
$V=900x-120x^{2}+4x^{3}$
Untuk memilih volume maksimum, sanggup kita gunakan turunan pertama yaitu $V'=0$
$900-240x+12x^{2}=0$
$x^{2}-20x+75=0$
$(x-15)(x-5)$
$x=15\ \text{atau}\ x=5$
Volume kota akan maksimum untuk $x=5$, (*kenapa tidak untuk $x=15$, coba Anda analisa!).

Volume maksimum adalah
$V=(30-2x)(30-2x)(x)$
$V=(30-10)(30-10)(5)$
$V=(400)(5)=2.000\ cm^{3}$ $(A)$
Jika masih tertarik untuk berlatih soal aplikasi turunan, silahkan disimak : Aplikasi Turunan Fungsi [Soal dan Pembahasan]

$\therefore$ Pilihan yang sesuai ialah $(A)\ 2.000\ cm^{3}$


20. Diketahui matriks $A=\begin{bmatrix}
2 & 1\\
4 & -1
\end{bmatrix}$ dan $B=\begin{bmatrix}
4 & -1\\
1 & 1
\end{bmatrix}$. Jika $C=AB$, invers matriks $C$ ialah $C^{-1}=\cdots$
$(A)\ \begin{bmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{bmatrix}$
$(B)\ \begin{bmatrix}
-\frac{1}{6} & \frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{bmatrix}$
$(C)\ \begin{bmatrix}
\frac{1}{6} & -\frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{bmatrix}$
$(D)\ \begin{bmatrix}
\frac{1}{6} & -\frac{1}{30} \\
-\frac{1}{2} & \frac{3}{10}
\end{bmatrix}$
$(E)\ \begin{bmatrix}
-\frac{1}{6} & -\frac{1}{2} \\
-\frac{1}{30} & -\frac{3}{10}
\end{bmatrix}$
Alternatif Pembahasan:

$C=AB$
$C=\begin{bmatrix}
2 & 1\\
4 & -1
\end{bmatrix} \begin{bmatrix}
4 & -1\\
1 & 1
\end{bmatrix}$
$C=\begin{bmatrix}
9 & -1\\
15 & -5
\end{bmatrix}$

$C^{-1}=\frac{1}{ad-bc}\begin{bmatrix}
d & -b\\
-c & a
\end{bmatrix}$
$C^{-1}=\frac{1}{(9)(-5)-(15)(-1)}\begin{bmatrix}
-5 & 1\\
-15 & 9
\end{bmatrix}$
$C^{-1}=\frac{1}{-30}\begin{bmatrix}
-5 & 1\\
-15 & 9
\end{bmatrix}$
$C^{-1}= \begin{bmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{bmatrix}$ $(A)$

Jika masih tertarik untuk berlatih soal tentang Matriks, silahkan disimak : Matematika Dasar Simak UI tentang Matriks

$\therefore$ Pilihan yang sesuai ialah $(A)\ \begin{bmatrix}
\frac{1}{6} & -\frac{1}{30} \\
\frac{1}{2} & -\frac{3}{10}
\end{bmatrix}$

21. Sepasang pengantin baru yang baru saja melangsungkan kesepakatan nikah berencana memiliki empat anak. Si suami menginginkan dari keempat anaknya itu nanti dua anak berjenis kelamin perempuan dan dua lainnya laki-laki. Sedangkan si istri menginginkan keempat anaknya terdiri dari tiga anak berjenis kelamin sama dan satu yang lainnya berbeda. Pernyataan yang paling tepat berdasarkan problem tersebut bahwa peluang terjadinya impian suami adalah...
$(A)$ sama besar dengan peluang impian istri
$(B)$ lebih besar dari peluang impian istri
$(C)$ lebih kecil dari peluang impian istri
$(D)$ lebih rasional dari pada impian istri
$(E)$ tidak bisa ditentukan
Alternatif Pembahasan:

Pengantin baru yang baru saja menikah sama-sama menginginkan anak berjumlah 4 orang, sehingga kemungkinan susunan jenis kelamin anak mereka ialah sebagai berikut;
$[1]: LLLL\ ,\ [9]:PLLL$
$[2]: LLLP\ ,\ [10]:PLLP$
$[3]: LLPL\ ,\ [11]:PLPL$
$[4]: LLPP\ ,\ [12]:PLPP$
$[5]: LPLL\ ,\ [13]:PPLL$
$[6]: LPLP\ ,\ [14]:PPLP$
$[7]: LPPL\ ,\ [15]:PPPL$
$[8]: LPPP\ ,\ [16]:PPPP$

Peluang impian suami dua anak berjenis kelamin perempuan dan dua lainnya laki-laki peluangnya adalah
$P(s)=\frac{6}{16}=\frac{3}{8}$
Peluang impian istri tiga anak jenis kelamin sama dari empat orang anak peluangnya adalah
$P(i)=\frac{8}{16}=\frac{1}{2}$

Jawaban yang paling tepat ada pada pilihan $(C)$ lebih kecil dari peluang impian istri.

Jika dikerjakan dengan memakai rumus-rumus, pengerjaan problem diatas kurang lebih menyerupai berikut ini;
$n(S):$ Banyak susunan jenis kelamin anak yang mungkin dari empat orang anak ialah $2^{4}=16$

Kejadian yang diperlukan suami, dua laki-laki dan dua perempuan dari empat orang anak;
$n(E_{s})=C_{2}^{4} \times C_{2}^{2}=12 \times 1=6$
$P(E_{s})=\frac{n(E_{s})}{n(S)}=\frac{6}{16}=\frac{3}{8}$

Kejadian yang diperlukan istri, tiga anak sama jenis kelamin dari empat orang anak;
$n(E_{i})=C_{1}^{4} \times C_{3}^{3} + C_{3}^{4} \times C_{1}^{1}$
$n(E_{i})=4 \times 1 + 4 \times 1=8$
$P(E_{i})=\frac{n(E_{i})}{n(S)}=\frac{8}{16}=\frac{1}{2}$

Jika masih tertarik untuk berlatih soal tentang Peluang, silahkan disimak : Matematika dan Harapan

$\therefore$ Pilihan yang sesuai ialah $(C)$ lebih kecil dari peluang impian istri


22. Diketahui $(x-1)$, $(x+3)$, $(5x+3)$ ialah tiga suku pertama barisan geometri naik $(r \gt 1)$. Suku ke-6 barisan geometri tersebut adalah...
$(A)\ 22$
$(B)\ 26$
$(C)\ 96$
$(D)\ 486$
$(E)\ 1.458$
Alternatif Pembahasan:

Barisan geometri memiliki beberapa ciri khusus diantaranya ialah $u^{2}_{2}=u_{1} \times u_{3}$, sehingga kita peroleh;
$(x+3)^{2}=(x-1)(5x+3)$
$x^{2}+6x+9=5x^2-2x-3$
$4x^{2}-8x-12=0$
$x^{2}-2x-3=0$
$(x-3)(x+1)=0$
$x=3\ \text{atau}\ x=-1$
Untuk $x=3$, Barisan Geometri: $2,\ 6,\ 18$
Suku ke-6 adalah:
$ar^{5}=2(3)^{5}=2(243)=486$

Jika ingin membahas soal dasar tentang deret geometri, silahkan disimak: Belajar Barisan dan Deret Geometri

$\therefore$ Pilihan yang sesuai ialah $(D)\ 486$

23. Hasil dari $\frac{^{3}log\ 81-^{5}log\ 32\ \cdot\ ^{2}log\ 25}{^{16}log\ 64}$ adalah...
$(A)\ -9$
$(B)\ -4$
$(C)\ -3$
$(D)\ 7$
$(E)\ 36$
Alternatif Pembahasan:

$\frac{^{3}log\ 81-^{5}log\ 32\ \cdot\ ^{2}log\ 25}{^{16}log\ 64}$
$=\frac{^{3}log\ 3^{4}-^{5}log\ 2^{5}\ \cdot\ ^{2}log\ 5^{2}}{^{4^{2}}log\ 4^{3}}$
$=\frac{4-(5)\ ^{5}log\ 2\ \cdot\ (2)\ ^{2}log\ 5}{\frac{3}{2}}$
$=\frac{4-(5)(2)}{\frac{3}{2}}$
$=\frac{-6}{\frac{3}{2}}$
$=-6 \times \frac{2}{3}$
$=-\frac{12}{3}=-4$

Jika ingin membahas soal matematika dasar tentang logaritma, silahkan disimak: Matematika Dasar: Logaritma [Soal SBMPTN dan Pembahasan]

$\therefore$ Pilihan yang sesuai ialah $(B)\ -4$

24. Pagar suatu jembatan terdiri dari 13 buah segitiga sama sisi menyerupai pada gambar.
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Jembatan memiliki dua sisi yang sama yaitu sisi kanan dan kiri. Tinggi jembatan ialah 2 meter. Luas semua segitiga (sisi kanan dan kiri) yang terbentuk dari pagar jembatan tersebut adalah...
$(A)\ \frac{4}{3}\sqrt{3}\ m^{2}$
$(B)\ 13\sqrt{3}\ m^{2}$
$(C)\ 26\sqrt{3}\ m^{2}$
$(D)\ \frac{52}{3}\sqrt{3}\ m^{2}$
$(E)\ \frac{104}{3}\sqrt{3}\ m^{2}$
Alternatif Pembahasan:

Pertama kita coba hitung luas sebuah segitiga sama sisi dengan tinggi $2\ m$.

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
$sin\ 60^{\circ}=\frac{AD}{AB}$
$\frac{1}{2}\sqrt{3}=\frac{2}{AB}$
$AB=\frac{2}{\frac{1}{2}\sqrt{3}}$
$AB=\frac{4}{\sqrt{3}}=\frac{4}{3}\sqrt{3}$
$[ABC]=\frac{1}{2} \cdot AB\ \cdot BC\ sin\ 60^{\circ}$
$[ABC]=\frac{1}{2} \cdot \frac{4}{3}\sqrt{3} \cdot \frac{4}{3}\sqrt{3} \cdot \frac{1}{2}\sqrt{3}$
$[ABC]=\frac{4}{3}\sqrt{3}$
Luas sebuah segitiga pada pagar jembatan ialah $\frac{4}{3}\sqrt{3}$

Banyak segitiga pagar jembatan ialah $26$ segitiga, sehingga luas semua segitiga (sisi kanan dan kiri) yang terbentuk dari pagar jembatan tersebut ialah $26 \times \frac{4}{3}\sqrt{3}=\frac{104}{3}\sqrt{3}$
Jika ingin membahas soal matematika dasar tentang luas segitiga, silahkan disimak: Luas Segitiga Jika Diketahui Panjang Dua Sisi Dan Besar Satu Sudut

$\therefore$ Pilihan yang sesuai ialah $(E)\ \frac{104}{3}\sqrt{3}\ m^{2}$

25. Daerah yang diarsir pada diagram ialah daerah himpunan penyelesaian dari suatu problem kegiatan linear.
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Model matematika yang sesuai dengan problem tersebut adalah....
$(A)\ x+2y \geq 8;\ 3x+2y \geq 12;\ x \geq 0;\ y \geq 0$
$(B)\ x+2y \leq 8;\ 3x+2y \leq 12;\ x \geq 0;\ y \geq 0$
$(C)\ x+2y \leq 8;\ 3x+2y \geq 12;\ x \geq 0;\ y \geq 0$
$(D)\ 2x+y \geq 8;\ 3x+2y \leq 12;\ x \geq 0;\ y \geq 0$
$(E)\ 2x+y \geq 8;\ 3x+2y \geq 12;\ x \geq 0;\ y \geq 0$
Alternatif Pembahasan:

Untuk memilih sistem pertidaksamaan dari daerah yang diarsir pada gambar, pertama kita harus menerima sistem persamaannya atau batas-batas daerah yang diarsir.
Pada gambar diatas ada 4 garis yang membatasi daerah yang diarsir, coba kita berikan ilustrasinya;

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Batas-batas daerah yang memenuhi;
$I:\ 6x+4y=24\ \rightarrow\ 3x+2y=12$
$II:\ 4x+8y=32\ \rightarrow\ x+2y=8$
$III:\ y=0$
$IV:\ x=0$

Untuk memilih pertidaksamaannya, kita tentukan dengan titik uji. Kita pilih sebuah titik pada daerah yang merupakan himpunan penyelesaian atau daerah yang diarsir pada gambar.
Titik $(0,0)$ ke $3x+2y=12$ diperoleh $ 0 \leq 12 $, maka pertidaksamaannya ialah $ 3x+2y \leq 12 $.
Titik $(0,0)$ ke $x+2y=8$ diperoleh $ 0 \leq 8 $, maka pertidaksamaannya ialah $ x+2y \leq 8 $.
Untuk batas $III$ dan $IV$ daerah yang diarsir ialah daerah $x \geq 0;\ y \geq 0$

Trik untuk melihat atau memilih daerah Himpunan Penyelesaian sanggup dengan melihat koefisien $y$.
  • Jika koefisien $y$ positif dan tanda $\leq$ maka daerah HP berada di bawah garis.
  • Jika koefisien $y$ positif dan tanda $\geq$ maka daerah HP berada di atas garis.

$\therefore$ Pilihan yang sesuai ialah $(B)\ x+2y \leq 8;\ 3x+2y \leq 12;\ x \geq 0;\ y \geq 0$

26. Tabel berikut menyajikan data berat tubuh sekelompok siswa.
Berat Badan (kg) Frekuensi
45-49 3
50-54 6
55-59 10
60-64 12
65-69 15
70-74 6
75-79 4
Kuartil atas data dalam tabel diatas adalah...
$(A)\ 66\frac{5}{6}$
$(B)\ 67\frac{1}{6}$
$(C)\ 67\frac{5}{6}$
$(D)\ 68\frac{1}{6}$
$(E)\ 68\frac{4}{6}$
Alternatif Pembahasan:

Kuartil ialah suatu nilai pembatas yang membagi data menjadi empat penggalan yang sama besar sesudah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(K_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.

Data pada tabel diberitahu yaitu total frekuensi ialah $n=56$.
Untuk menetukan letak $Q_{3}$ ada pada data ke- $\left[\frac{3}{4}(n+1) \right]$
$Q_{3}$ terletak pada data ke- $\left[\frac{3}{4}(56+1) \right]=42,75$

$Q_{3}$ pada data ke-$42,75$ artinya $Q_{3}$ berada pada kelas interval $65-69$
Tepi bawah kelas $Q_{3}$: $65-69$
$t_{b}= 65 - 0,5 = 64,5 $
Frekuensi kumulatif sebelum kelas $Q_{3}$,
$f_{k}= 3+6+10+12=31$
Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=15$
Panjang kelas $c=69,5-65,5=5$

$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
& = 64,5 + \left( \frac{\frac{3}{4}.56 - 31}{15} \right)5 \\
& = 64,5 + \left( \frac{42 - 31}{15} \right)5 \\
& = 64,5 + \left( \frac{11}{15} \right)5 \\
& = 64,5 + \frac{11}{3} \\
& = 64\frac{1}{2} + 3\frac{2}{3} \\
& = 68\frac{1}{6}
\end{align} $

$\therefore$ Pilihan yang sesuai ialah $(D)\ 68\dfrac{1}{6}$

27. Persamaan bundar yang berpusat di $P(3,-1)$ dan melalui titik $(5,2)$ adalah...
$(A)\ x^{2}+y^{2}+6x-2y-55=0$
$(B)\ x^{2}+y^{2}+6x-2y-31=0$
$(C)\ x^{2}+y^{2}-6x+2y-3=0$
$(D)\ x^{2}+y^{2}-6x+2y-3=0$
$(E)\ x^{2}+y^{2}-6x+2y+23=0$
Alternatif Pembahasan:

Untuk membentuk persamaan bundar setidaknya ada 2 hal dasar harus kita ketahui, yaitu titik pusat dan jari-jari lingkaran.

Pada soal disampaikan titik pusat bundar $P(3,-1)$ dan bundar melalui titik $(5,2)$, artinya jari-jari bundar ialah jarak titik pusat ke titik yang dilalui lingkaran.
$ \begin{align}
r & = \sqrt{(y_{2}-y_{1})^{2}+x_{2}-x_{1})^{2}} \\
& =\sqrt{(2-(-1))^{2}+(5-3)^{2}} \\
& =\sqrt{9+4} \\
& =\sqrt{13}
\end{align} $

Persamaan bundar engan pusat $(a,b)$ dan jari-jari $r$ adalah:
$ \begin{align}
(x-a)^{2}+(y-b)^{2}& =r^{2} \\
(x-3)^{2}+(y-(-1))^{2}& =(\sqrt{13})^{2} \\
x^{2}-6x+9+y^{2}+2y+1& =13 \\
x^{2}+y^{2}-6x+2y+10& =13 \\
x^{2}+y^{2}-6x+2y-3& =0
\end{align} $

Latih lagi kemampuan matematika dasar tentang lingkaran, silahkan disimak: Matematika Dasar: Lingkaran [Soal SBMPTN dan Pembahasan]

$\therefore$ Pilihan yang sesuai ialah $(C)\ x^{2}+y^{2}-6x+2y-3=0$


28. Seorang penjahit memiliki persediaan $4\ m$ kain wol dan $5\ m$ kain satin. Dari kain tersebut akan dibuat dua model baju. Baju pesta I memerlukan $2\ m$ kain wol dan $1\ m$ kain satin, sedangkan baju pesta II memerlukan $1\ m$ kain wol dan $2\ m$ kain satin. Baju pesta I dijual dengan harga $Rp600.000,00$ dan baju pesta II seharga $Rp500.000,00$. Jika baju pesta tersebut terjual, hasil penjualan maksimum penjahit tersebut adalah...
$(A)\ Rp1.800.000,00$
$(B)\ Rp1.700.000,00$
$(C)\ Rp1.600.000,00$
$(D)\ Rp1.250.000,00$
$(E)\ Rp1.200.000,00$
Alternatif Pembahasan:

Informasi yang ada pada soal coba kita rangkum dalam bentuk tabel, kurang lebih menjadi menyerupai berikut ini;

Jenis Kain Wol SatinHarga
I (x) 2 1 600.000
II (y) 1 2500.000
Tersedia 4 5
Dari tabel diatas, sanggup kita bentuk sistem pertidaksamaannya [*dengan memisalkan $\text{kain}\ I=x$ dan $\text{kain}\ II=y$].
$ \begin{align}
2x+y & \leq 4 \\
x+2y & \leq 5 \\
x & \geq 0 \\
y & \geq 0 \end{align} $
Trik untuk melihat atau memilih daerah Himpunan Penyelesaian sanggup dengan melihat koefisien $y$.
  • Jika koefisien $y$ positif dan tanda $\leq$ maka daerah HP berada di bawah garis.
  • Jika koefisien $y$ positif dan tanda $\geq$ maka daerah HP berada di atas garis.
Jika kita gambarkan citra daerah Himpunan Penyelesaian sistem pertidaksamaan diatas adalah;
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Untuk menerima penjualan maksimum, salah satu caranya sanggup dengan titik uji pada titik sudut daerah HP kepada fungsi tujuan $Z=600.000x+500.000y$.
  • $A\ (2,0)$ maka $Z=600.000(2)+500.000(0)=1.200.000$
  • $B\ (1,2)$ maka $Z=600.000(1)+500.000(2)=1.600.000$
    *Titik $(B)$ kita peroleh dengan mengelimiasi atau substitusi garis 1 dan garis 2
  • $C\ (0,\frac{5}{2})$ maka $Z=600.000(0)+500.000(\frac{5}{2})=1.250.000$
$\therefore$ Pilihan yang sesuai ialah $(C)\ Rp1.600.000,00$

29. Nilai $x$ yang memenuhi biar fungsi trigonometri $f(x)=10\ sin\ 2x +5$ memotong sumbu $X$ pada interval $90^{\circ} \leq x \leq 180^{\circ}$ adalah...
Alternatif Pembahasan:

Agar fungsi trigonometri $f(x)=10\ sin\ 2x +5$ memotong sumbu $X$, maka nilai $f(x)=0$.
$ \begin{align}
10\ sin\ 2x +5 & = 0 \\
10\ sin\ 2x & = -5 \\
sin\ 2x & = \frac{-5}{10} \\
sin\ 2x & = -\frac{1}{2} \\
sin\ 2x & = sin\ 210 \\
\end{align} $
$2x=210+k \cdot 360$ atau $2x=(180-210)+k \cdot 360$
$2x=210+k \cdot 360$ atau $2x=-30+k \cdot 360$
$x=105+k \cdot 180$ atau $x=-15 +k \cdot 180$
Untuk $k=0$ kita peroleh $x=105$ atau $x=-15$
Untuk $k=1$ kita peroleh $x=285$ atau $x=165$

Nilai $x$ yang memenuhi ialah $x=105^{\circ}$ atau $x=165^{\circ}$

$\therefore$ Jawaban yang sesuai ialah $105$ atau $165$

30. Segitiga $ABC$ dengan koordinat titik sudut $A(2,-1)$, $B(6,-2)$, dan $C(5,2)$ dirotasi sejauh $180^{\circ}$ dengan pusat $(3,1)$. Bayangan koordinat titik sudut segitiga $ABC$ adalah...
$(A)\ A(4,3),\ B(0,4),\ C(1,0)$
$(B)\ A(3,4),\ B(4,0),\ C(0,1)$
$(C)\ A(-4,3),\ B(0,-4),\ C(-1,0)$
$(D)\ A(-4,-3),\ B(0,-4),\ C(-1,0)$
$(E)\ A(-4,-3),\ B(0,4),\ C(1,1)$
Alternatif Pembahasan:

Bayangan titik $(x,y)$yang di rotasi dirotasi sejauh $\theta$ dengan pusat $(a,b)$ kita tentukan dengan matriks;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ \theta & -sin\ \theta\\
sin\ \theta & cos\ \theta
\end{pmatrix}\begin{pmatrix}
x-a\\
y-b
\end{pmatrix}+\begin{pmatrix}
a\\
b
\end{pmatrix}$

Bayangan titik $(x,y)$ sudut segitiga yang di rotasi dirotasi sejauh $180^{\circ}$ dengan pusat $(3,1)$ adalah;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ 180 & -sin\ 180\\
sin\ 180 & cos\ 180
\end{pmatrix}\begin{pmatrix}
x-3\\
y-1
\end{pmatrix}+\begin{pmatrix}
3\\
1
\end{pmatrix}$

$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x-3\\
y-1
\end{pmatrix}+\begin{pmatrix}
3\\
1
\end{pmatrix}$

Bayangan titik $A(2,-1)$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
2-3\\
-1-1
\end{pmatrix}+\begin{pmatrix}
3\\
1
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
-1\\
-2
\end{pmatrix}+\begin{pmatrix}
3\\
1
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
1+3\\
2+1
\end{pmatrix}=\begin{pmatrix}
4\\
3
\end{pmatrix}$
Dengan cara yang sama bayangan titik $B(6,-2)$ ialah $B'(0,4)$ dan bayangan titik $C(5,2)$ ialah $C'(1,0)$
*Alternatif: dirotasi sejauh $180^{\circ}$ dengan pusat $(a,b)$, sama juga dengan direfleksi dengan pusat $(a,b)$

$\therefore$ Pilihan yang sesuai ialah $(A)\ A(4,3),\ B(0,4),\ C(1,0)$

31. Diketahui persamaan kuadrat $2x^{2}-3x+1=0$ memiliki akar-akar $x_{1}$ dan $x_{2}$. Persamaan kuadrat baru yang akar-akarnya $(2x_{1}-1)$ dan $(2x_{2}-1)$ ialah $ax^{2}+bx+c=0$. Nilai dari $2a+b-c$ adalah...
Alternatif Pembahasan:

Dari persamaan kuadrat $2x^{2}-3x+1=0$, kita peroleh;
$x_{1}+x_{2}=-\frac{b}{a}=-\frac{-3}{2}=\frac{3}{2}$
$x_{1}\times x_{2}=\frac{c}{a}=\frac{1}{2}$

Persamaan kuadrat baru yang akar-akarnya $m=(2x_{1}-1)$ dan $n=(2x_{2}-1)$ ialah $x^{2}-(m+n)x+m \times n=0$.
$ \begin{align}
m+n & = 2x_{1}-1+2x_{2}-1 \\
& = 2(x_{1}+x_{2})-2 \\
& = 2 \left( \frac{3}{2} \right)-2 \\
& = 3-2 \\
& = 1 \end{align} $

$ \begin{align}
m \times n & = \left(2x_{1}-1 \right) \left( 2x_{2}-1 \right) \\
& = 4x_{1}x_{2}-2x_{1}-2x_{2}+1 \\
& = 4x_{1}x_{2}-2\left(x_{1}+x_{2} \right)+1 \\
& = 4\left(\frac{1}{2} \right)-2\left( \frac{3}{2} \right)+1 \\
& = 2-3+1 \\
& = 0 \end{align} $

Persamaan kuadrat baru adalah,
$ \begin{align}
x^{2}-(m+n)x+m \times n & = 0 \\
x^{2}-(1)x+0 & = 0 \\
x^{2}-x & = 0 \\
\text {Nilai}\ a & = 1 \\
\text {Nilai}\ b & = -1 \\
\text {Nilai}\ c & = 0 \\
\text {Nilai}\ 2a+b-c & = 1 \end{align} $
(*Soal ini memiliki jawaban lebih dari satu)

$\therefore$ Jawaban yang sesuai ialah $-1$


32. Tujuh tahun yang kemudian umur Ani sama dengan $6$ kali umur Budi. Empat tahun yang akan datang 2 kali umur Ani sama dengan 5 kali umur Budi ditambah dengan $9$ tahun. Umur Budi sekarang adalah....
$(A)\ 42\ \text{tahun}$
$(B)\ 35\ \text{tahun}$
$(C)\ 21\ \text{tahun}$
$(D)\ 18\ \text{tahun}$
$(E)\ 13\ \text{tahun}$
Alternatif Pembahasan:

Kita misalkan umur Ani dan Budi saat ini ialah $\text{Ani}=A$ dan $\text{Budi}=B$.
Untuk tujuh tahun yang kemudian umur mereka ialah $(A-7)$ dan $(B-7)$, berlaku:
$ \begin{align}
(A-7) & = 6(B-7) \\
A-7 & = 6B-42 \\
A-6B & =-42+7 \\
A-6B & =-35\ \text{(Pers.1)}
\end{align} $

Untuk empat tahun yang akan datang umur mereka ialah $(A+4)$ dan $(B+4)$, berlaku:
$ \begin{align}
2(A+4) & = 5(B+4)+9 \\
2A+8 & = 5B+20+9 \\
2A+8 & = 5B+29 \\
2A-5B & =29-8 \\
2A-5B & =21\ \text{(Pers.2)}
\end{align} $

Dari (Pers.1) dan (Pers.2) kita peroleh;
$\begin{array}{c|c|cc}
A -6B = -35 & \times 2 & 2A-12B = -70 & \\
2A- 5B = 21 & \times 1 & 2A-5B = 21 & - \\
\hline
& & -7B = -91 & \\
& & B = \frac{-91}{-7} & \\
& & B = 13 &
\end{array} $

$\therefore$ Pilihan yang sesuai ialah $(E)\ 13\ \text{tahun}$

33. Diketahui data besar gaji seluruh karyawan di kota $X$ ialah sebagai berikut.
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Jika Pak Burhan ialah salah satu dari golongan sebagian besar karyawan dengan gaji yang sama. Kemungkinan gaji Pak Burhan yan paling sesuai adalah...
$(A)\ Rp4.630.000,00$
$(B)\ Rp4.680.000,00$
$(C)\ Rp4.950.000,00$
$(D)\ Rp5.010.000,00$
$(E)\ Rp5.430.000,00$
Alternatif Pembahasan:

Dari diagram batang diatas, dengan menafsir gaji yang paling tinggi ialah $Rp5.430.000,00$ dan yang paling rendah $Rp4.630.000,00$ dan kenaikan setiap diagram batang sama yaitu $Rp160.000,00$ kemungkinan gaji Pak Burhan yan paling sesuai ialah $Rp4.950.000,00$. Ilustrasi diagram batang menjadi menyerupai berikut ini;

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)

$\therefore$ Pilihan yang sesuai ialah $(C)\ Rp4.950.000,00$

34. Gambar di bawah ini menawarkan jalur perjalanan dari kota $M$ ke kota $O$ melalui kota $N$.
Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)
Banyak cara perjalanan dari kota $M$ ke kota $O$ dan kembali ke kota $M$ melalui $N$ dengan ketentuan tidak melalui jalur yang sama adalah...
Alternatif Pembahasan:

Dari rute perjalanan pada gambar diatas beberap informasi sanggup kita peroleh, antara lain:
Perjalanan pergi dari kota $M$ ke kota $O$ melalui $N$ ada $4 \times 5=20$ cara perjalanan dan kembali tidak melalui jalur yang sama maka cara perjalanan pulang berkurang masing-masing satu jalur. Banyak cara perjalanan kembali ke kota $M$ dari kota $O$ menjadi $4 \times 3=12$ cara perjalanan.

Total banyak cara perjalanan ialah $20 \times 12=240$ cara perjalanan

$\therefore$ Jawaban yang sesuai ialah $240$

35. Nilai dari $ \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+6x-3}- 3x-4 \right )$ adalah...
$(A)\ -3$
$(B)\ -2$
$(C)\ -1$
$(D)\ 1$
$(E)\ 3$
Alternatif Pembahasan:

$\underset{x \to \infty}{lim} \left ( \sqrt{9x^2+6x-3}- 3x-4\right )$
$=\underset{x \to \infty}{lim} \left ( \sqrt{9x^2+6x-3}- \left (3x+4 \right ) \right )$
$=\underset{x \to \infty}{lim} \left ( \sqrt{9x^2+6x-3}-\sqrt{ \left (3x+4 \right )^{2}} \right )$
$=\underset{x \to \infty}{lim} \left ( \sqrt{9x^2+6x-3}-\sqrt{9x^2+24x+16} \right )$
$=\frac{b-q}{2\sqrt{a}}$
$=\frac{6-24}{2\sqrt{9}}$
$=\frac{-18}{6}$
$=-3$

Jika masih tertarik untuk berlatih soal limit tak hingga yang lain, silahkan disimak: Limit Menuju Tak Hingga [Contoh Soal Simak UI 2009]

$\therefore$ Pilihan yang sesuai ialah $(A)\ -3$

36. Banyak bilangan terdiri dari angka berlainan antara $100$ dan $400$ yang sanggup disusun dari angka-angka $1,\ 2,\ 3,\ 4,\ 5$ adalah...
$(A)\ 36$
$(B)\ 48$
$(C)\ 52$
$(D)\ 60$
$(E)\ 68$
Alternatif Pembahasan:

Bilangan yang akan kita susun ialah bilangan yang terdiri dari $3$ angka beda dintara $100$ dan $400$, berarti yang bisa menjadi ratusan hanya angka $1,\ 2,\ \text{dan}\ 3$.
Banyak angka jadi ratusan ada $3$,
Banyak angka jadi puluhan ada $4$,
Banyak angak jadi satuan ada $3$

Banyak bilangan adalah: $3 \times 4 \times 3=36$

$\therefore$ Pilihan yang sesuai ialah $(A)\ 36$


37. Agen perjalanan "Lombok Menawan" menawarkan paket perjalanan wisata menyerupai tabel di bawah ini:
--- Paket I Paket II
Sewa Hotel 56
Tempat Wisata 4 5
Biaya Total 3.100.000,00 3.000.000,00
Bentuk matriks yang sesuai untuk memilih biaya hotel tiap malam dan biaya satu tempat wisata adalah...
$(A)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -6\\
-4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$(B)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 6\\
4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$(C)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$(D)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
$(E)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
-4 & 5\\
5 & -6
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$
Alternatif Pembahasan:

Dengan memisalkan Sewa Hotel=$x$ dan Tempat Wisata=$y$, maka tabel diatas bila kita sajikan dalam bentuk matrik, kurang lebih menyerupai berikut ini;
$5x+4y=3.100.000$
$6x+5y=3.000.000$

$\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

Untuk menerima nilai $x$ dan $y$ dalam persamaan matriks, kita coba gunakan invers matriks;
$\begin{align}
A \cdot X & = B \\
A^{-1} \cdot A \cdot X & = A^{-1} \cdot B \\
I \cdot X & = A^{-1} \cdot B \\
X & = A^{-1} \cdot B \\
\end{align} $

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & 4\\
6 & 5
\end{pmatrix}^{-1} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\frac{1}{(5)(5)-(6)(4)}\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

$\begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -4\\
-6 & 5
\end{pmatrix} \begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

Jika masih tertarik untuk berlatih soal tentang Matriks, silahkan disimak : Matematika Dasar Simak UI tentang Matriks

$\therefore$ Pilihan yang sesuai ialah $(A)\ \begin{pmatrix}
x \\
y
\end{pmatrix}=\begin{pmatrix}
5 & -6\\
-4 & 5
\end{pmatrix}\begin{pmatrix}
3.100.000 \\
3.000.000
\end{pmatrix}$

38. Hasil dari $\int 4x\ \left ( x^{2}-1 \right )^{5}\ dx $ adalah...
$(A)\ -\frac{1}{3} \left ( x^{2}-1 \right )^{6} + C $
$(B)\ -\frac{1}{6} \left ( x^{2}-1 \right )^{6} + C $
$(C)\ \frac{1}{6} \left ( x^{2}-1 \right )^{6} + C $
$(D)\ \frac{1}{3} \left ( x^{2}-1 \right )^{6} + C $
$(E)\ \frac{4}{3} \left ( x^{2}-1 \right )^{6} + C $
Alternatif Pembahasan:

Hasil $\int 4x\ \left ( x^{2}-1 \right )^{5}\ dx $ kita coba kerjakan dengan pemisalan;
Misal:
$u=x^{2}-1$
$\frac{du}{dx}=2x$
$du=2x\ dx$

Soal diatas, sekarang bisa kita rubah menjadi;
$\int 4x\ \left ( x^{2}-1 \right )^{5}\ dx $
$=\int 2 \cdot 2x\ u^{5}\ dx $
$=\int 2 u^{5}\ 2x\ dx $
$=\int 2 u^{5}\ du $
$=\frac{2}{5+1} u^{5+1}+C $
$=\frac{2}{6} u^{6}+C $
Lalu kita kembalikan nilai $u=x^{2}-1$
$=\frac{1}{3} \left ( x^{2}-1 \right )^{6} +C $ $(C)$

$\therefore$ Pilihan yang sesuai ialah $(C)\ \frac{1}{6} \left ( x^{2}-1 \right )^{6} + C $

39. Diketahui $\int_{0}^{3} \left ( x^{2}-2px+p+2 \right ) dx=3$. Nilai $p$ yang memenuhi adalah...
$(A)\ -3$
$(B)\ -2$
$(C)\ 1$
$(D)\ 2$
$(E)\ 3$
Alternatif Pembahasan:

$ \begin{align}
\int_{0}^{3} \left ( x^{2}-2px+p+2 \right ) dx & = 3 \\
\left [\frac{1}{3}x^{3}-px^{2}+px+2x \right ]_{0}^{3} & = 3 \\
\left [\frac{1}{3}(3)^{3}-p(3)^{2}+p(3)+2(3) \right ]-\left [\frac{1}{3}(0)^{3}-p(0)^{2}+p(0)+2(0) \right ] & = 3 \\
\left [9-9p+3p+6 \right ]-0 & = 3 \\
\left [15-6p \right ] & = 3 \\
15-3 & = 6p \\
12 & = 6p \\
2 & = p
\end{align} $

(*Simak juga soal integral lainnya : Matematika Dasar Integral Fungsi (*Soal Dari Berbagai Sumber))

$\therefore$ Pilihan yang sesuai ialah $(D)\ 2$

40. Dari suatu kelompok diskusi yang terdiri atas $5$ laki-laki dan $4$ wanita, akan dipilih $3$ orang secara acak untuk memaparkan hasil diskusinya. Banyak cara untuk memilih $2$ laki-laki dan $1$ perempuan adalah...
$(A)\ 18$
$(B)\ 21$
$(C)\ 30$
$(D)\ 40$
$(E)\ 80$
Alternatif Pembahasan:

Akan dipilih secara acak $2$ laki-laki dan $1$ perempuan dari $5$ laki-laki dan $4$ wanita.
Untuk memilih $2$ laki-laki dari $5$ pria, banyak caranya ialah $C_{2}^{5}=\frac{5!}{2!(5-2)!}$
$\begin{align}
C_{r}^{n} & = \frac{n!}{r!(n-r)!} \\
C_{2}^{5} & = \frac{5!}{2!(5-2)!} \\
& = \frac{5 \cdot 4 \cdot 3!}{2 \cdot 3!} \\
& = \frac{5 \cdot 4}{2} \\
& = 10\end{align} $

Untuk memilih $1$ perempuan dari $4$ wanita, banyak caranya ialah $C_{1}^{4}=\frac{4!}{1!(4-1)!}$
$\begin{align}
C_{r}^{n} & = \frac{n!}{r!(n-r)!} \\
C_{1}^{4} & = \frac{4!}{1!(4-1)!} \\
& = \frac{4 \cdot 3!}{1 \cdot 3!} \\
& = 4 \end{align} $

Banyak cara untuk memilih $2$ laki-laki dan $1$ perempuan ialah $10 \times 4=40$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 40$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Jika tertarik untuk menyimpan catatan calon guru di atas dalam bentuk file (.pdf) silahkan di download pada link berikut ini:
  • Soal UNBK Matematika IPA Tahun 2018 (*Simulasi UNBK 2020) ๐Ÿ‘€ Download
  • Soal dan Pembahasan UNBK Matematika IPA Tahun 2018 (*Simulasi UNBK 2020) ๐Ÿ‘€ Download
Untuk saran yang sifatnya membangun terkait problem alternatif penyelesaian Soal UNBK Matematika SMA IPA tahun 2018 (*Simulasi UNBK 2020) atau request pembahasan soal, silahkan disampaikan๐Ÿ˜ŠCMIIW.

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Soal dan Pembahasan UNBK Matematika IPA  40 Soal dan Pembahasan UNBK Matematika SMA IPA Tahun 2018 (*Simulasi UNBK 2020)

Belum ada Komentar untuk "40 Soal Dan Pembahasan Unbk Matematika Sma Ipa Tahun 2018 (*Simulasi Unbk 2020)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel