Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama Yasop) - Sman 2 Balige 2018

 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Catatan calon guru yang kita diskusikan saat ini akan membahas Soal Matematika Seleksi Akademik masuk Asrama Yayasan Soposurung (YASOP) Balige tahun 2018. Seleksi akademik masuk asrama Yayasan Soposurung Balige ialah seleksi tahap awal, selanjutnya akan ada beberapa tahapan seleksi, antara lain Psikologi, Kesehatan, Samapta dan dilanjutkan dengan Wawancara. Siswa yang dinyatakan lolos seleksi hingga tahap akhir, akan diterima untuk tinggal di asrama Yayasan Soposurung Balige dan bersekolah di SMAN 2 Balige.

Asrama Yayasan Soposurung (YASOP) Balige ialah salah satu yayasan yang konsisten dalam memajukan pendidikan di Indonesia khususnya pendidikan di Sumatera Utara, sehingga setiap tahun siswa yang ikut seleksi masuk Asrama Yayasan Soposurung Balige selalu meningkat. Peminat yang ikut seleksi masuk Asrama Yayasan Soposurung (YASOP) Balige setiap tahun bukan hanya dari Sumatera Utara saja, tetapi dari aneka macam provinsi yang ada di Indonesia.

Karena para siswa yang berminat masuk Asrama Yayasan Soposurung (YASOP) Balige berasal dari aneka macam provinsi dan umumnya ialah para juara di kelas sewaktu SMP, sehingga seleksi masuk Asrama Yayasan Soposurung (YASOP) Balige ini menjadi tolak ukur Sekolah Menengah Pertama (SMP). Dengan kata lain "Jika siswa 'SMPN 2 Tarabintang' banyak masuk Asrama Yayasan Soposurung (YASOP) Balige maka dengan sendirinya 'SMPN 2 Tarabintang' ialah Sekolah Menengah Pertama favorit atau Sekolah Menengah Pertama unggulan di mata masyarakat.

Soal Seleksi Akademik masuk Asrama Yayasan Soposurung SMAN 2 Balige tiap tahun yang diujikan juga terus berkembang seiring dengan mengikuti perkembangan kurikulum dan teknologi.

Meskipun perkembangan kurikulum dan teknologi menghipnotis perkembangan soal seleksi masuk Asrama Yayasan Soposurung (YASOP) Balige setiap tahun, tetapi aturan-aturan dasar atau teorema-teorema dalam mengerjakan soal secara umum masih sama, terkhusus dalam pelajaran matematika. Sehingga soal-soal yang sudah diujikan panitia Seleksi Akademik masuk Asrama Yayasan Soposurung pada tahun 2018 ini sangat baik dijadikan latihan dasar sebagai bahan persiapan dan latihan dalam bernalar.

Mari kita diskusikan beberapa soal Seleksi Akademik Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige tahun 2018:
1. Bentuk sederhana dari bentuk aljabar $\left( \dfrac{x+2}{x} \right)^{2}-\dfrac{x+5}{x}$ adalah...
$\begin{align}
(A)\ & \dfrac{x^{2}+2x-1}{x^{2}} \\
(B)\ & \dfrac{-x+4}{x^{2}} \\
(C)\ & \dfrac{x^{2}+5x-1}{x^{2}} \\
(D)\ & \dfrac{x+1}{x^{2}}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \left( \dfrac{x+2}{x} \right)^{2}-\dfrac{x+5}{x} \\
& = \dfrac{x^{2}+4x+4}{x^{2}}-\dfrac{(x+5)x}{x^{2}} \\
& = \dfrac{x^{2}+4x+4-x^{2}-5x}{x^{2}} \\
& = \dfrac{-x+4}{x^{2}}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ \dfrac{-x+4}{x^{2}}$

2. $\sqrt[3]{-27}-\sqrt[3]{-125}-\sqrt[3]{-64}=\cdots$
$\begin{align}
(A)\ & -6 \\
(B)\ & 0 \\
(C)\ & 6 \\
(D)\ & 10
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \sqrt[3]{-27}-\sqrt[3]{-125}-\sqrt[3]{-64} \\
& = \sqrt[3]{(-3)^3}-\sqrt[3]{(-5)^3}-\sqrt[3]{(-4)^3} \\
& = -3-(-5)-(-4) \\
& = -3+5+4=6
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 6$

3. Bentuk sederhana dari $\sqrt[4]{56-2\sqrt{720}}=\cdots$ adalah...
$\begin{align}
(A)\ & \sqrt{5}-1 \\
(B)\ & 1-\sqrt{5} \\
(C)\ & \sqrt{3}-\sqrt{2} \\
(D)\ & \sqrt{2}-\sqrt{3}
\end{align}$
Alternatif Pembahasan:

Untuk sekedar catatan bentuk akar yaitu:

  1. $\sqrt{(a+b))+2\sqrt{a \times b}}=\sqrt{a}+\sqrt{b}$
  2. $\sqrt{(a+b))-2\sqrt{a \times b}}=\sqrt{a}-\sqrt{b}$ dimana $a \gt b$

$\begin{align}
& \sqrt[4]{56-2\sqrt{720}} \\
& = \sqrt{\sqrt{56-2\sqrt{720}}} \\
& = \sqrt{\sqrt{(36+20)-2\sqrt{36 \times 20}}} \\
& = \sqrt{\sqrt{36}-\sqrt{20}} \\
& = \sqrt{6-2\sqrt{5}} \\
& = \sqrt{(5+1)-2\sqrt{5 \times 1}} \\
& = \sqrt{5}-\sqrt{1}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(A)\ \sqrt{5}-1$

4. Lima pasang suami istri menghadiri suatu pesta kemudian mereka saling berjabat tangan satu sama lain. Banyaknya jabat tangan yang terjadi kalau setiap pasangan suami istri tidak pernah saling berjabat tangan adalah...
$\begin{align}
(A)\ & 40 \\
(B)\ & 45 \\
(C)\ & 85 \\
(D)\ & 90
\end{align}$
Alternatif Pembahasan:

Disampaikan pada soal ada lima pasang suami istri sehingga banyak yang bersalaman ialah $10$ orang, tetapi suami istri tidak boleh bersalaman. Soal ini identik dengan "Banyak diagonal pada segi-10 adalah..."

Sebagai catatan kaidah pencacahan kita ingatkan sedikit ihwal kombinasi yaitu $_{p}C_{r}=\dfrac{p!}{r!(p-r)!}$ dimana $p \gt r$.

Jika tidak aturan, dari $10$ yang akan saling bersalaman maka banyak salaman yang terjadi ialah komniasi $2$ dari $10$ yang mampu kita hitung menjadi:
$\begin{align}
_{p}C_{r} & = \dfrac{p!}{r!(p-r)!} \\
_{10}C_{2} & = \dfrac{10!}{2!(10-2)!} \\
& = \dfrac{10 \cdot 9 \cdot 8!}{2 (8)!} \\
& = \dfrac{10 \cdot 9 }{2 } \\
& = 45
\end{align}$
Karena setiap pasangan suami istri tidak pernah saling berjabat tangan maka banyak jabat tangan diatas kita kurangi dengan banyak pasangan suami istri yaitu $5$, sehingga banyak jabat tangan ialah $45-5=40$

$\therefore$ Pilihan yang sesuai ialah $(A)\ 40$

5. Lingkaran pada gambar berikut memiliki radius $4\ cm$ dan $\angle BCD=30^{\circ}$. Luas daerah yang diarsir adalah...
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
$\begin{align}
(A)\ & 1 \\
(B)\ & 4 \\
(C)\ & 8 \\
(D)\ & 16
\end{align}$
Alternatif Pembahasan:

Untuk mempermudah pengucapan kita beri beberapa titik komplemen pada gambar,
Titik pusat lingkaran kita beri nama titik $O$
Pada garis $BC$ kita beri titik $E$ dimana $DE=AB$, sehingga kita peroleh persegi panjang $DEBA$ dan segitiga siku-siku $DEC$

 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Karena $\bigtriangleup CDE$ ialah segitiga siku-siku maka berlaku;
$sin\ 30^{\circ}=\frac{DE}{CD}$
$\frac{1}{2}=\frac{DE}{8}$
$DE=4$

$CE^{2}+DE^{2}=CD^{2}$
$CE^{2}+4^{2}=8^{2}$
$CE^{2}=64-16$
$CE^{2}=48$
$CE=4\sqrt{3}$

Kita perhatikan kembali $\bigtriangleup ODE$ ialah segitiga sama sisi sehingga $\bigtriangleup OFD$ ialah segitiga siku-siku dan berlaku;
$OD^{2}=OF^{2}+DF^{2}$
$4^{2}=OF^{2}+2^{2}$
$16=OF^{2}+4$
$OF^{2}=16-4$
$OF=\sqrt{12}$
$OF=2 \sqrt{3}$
dari hasil perhitungan diatas mampu kita peroleh panjang $AD$,
$AD=4-2 \sqrt{3}$

$ABCD$ berupa trapesium, luasnya adalah:
$ \left [ABCD \right ]=\dfrac{1}{2} (AE+EB+CD)(BC)$
$ \left [ABCD \right ]=\dfrac{1}{2} (4\sqrt{3}+4-2 \sqrt{3}+4-2 \sqrt{3})(4)$
$ \left [ABCD \right ]=\dfrac{1}{2} (8)(4)$
$ \left [ABCD \right ]=16$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 16$

6. Urutan bilangan-bilangan $3^{333}, 5^{444}, 7^{222}, 4^{333}$ dari yang terkecil hingga yang terbesar adalah...
$\begin{align}
(A)\ & 5^{444}, 7^{222}, 4^{333}, 3^{333} \\
(B)\ & 5^{444}, 7^{222}, 3^{333}, 4^{333} \\
(C)\ & 3^{333}, 7^{222}, 4^{333}, 5^{444} \\
(D)\ & 3^{333}, 7^{222}, 5^{444}, 4^{333}
\end{align}$
Alternatif Pembahasan:

Untuk membandingak bilangan berpangkat yang terkecil atau yang terbesar, mampu kita lakukan dengan menjadikan bilangan pokok (basis) sama atau pangkatnya yang sama.

Bilangan-bilangan $3^{333}, 5^{444}, 7^{222}, 4^{333}$ kita ubah bentuk dengan menggunakan sifat bilangan berpangkat yaitu $\left(a^{m} \right)^{n}=a^{mn}$.

  • $3^{333}=\left(3^{3} \right)^{111}=27^{111}$
  • $4^{333}=\left(4^{3} \right)^{111}=64^{111}$
  • $5^{444}=\left(5^{4} \right)^{111}=625^{111}$
  • $7^{222}=\left(7^{2} \right)^{111}=47^{111}$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 3^{333}, 7^{222}, 4^{333}, 5^{444}$

7. Suku ke-29 dari barisan $5, 11, 20, 32, \cdots$ adalah
$\begin{align}
(A)\ & 1307 \\
(B)\ & 1220 \\
(C)\ & 1037 \\
(D)\ & 1022
\end{align}$
Alternatif Pembahasan:

Barisan $5,\ 11,\ 20,\ 32,\ \cdots$ barisan aritmatika tingkat dua;
$u_{n}=a+(n-1)b+\dfrac{(n-1)(n-2)}{2}c$
dimana:
$a=u_{1}$
$b=u_{2}-a$
$c=u_{3}-u_{2}-b$

Jika kita terapkan pada barisan soal, maka
$a=5$
$b=11-5=6$
$c=20-11-6=3$
$u_{n}=a+(n-1)b+\dfrac{(n-1)(n-2)}{2}c$
$u_{29}=5+(29-1)(6)+\dfrac{(29-1)(29-2)}{2}(3)$
$u_{29}=5+(28)(6)+\dfrac{(28)(27)}{2}(3)$
$u_{29}=5+168+(14)(27)(3)$
$u_{29}=1307$

Jika tidak suka pakai rumus diatas, mampu dengan menggunakan manipulasi aljabar yaitu:
$u_{1}= 5= 2+ 3(1)$
$u_{2}= 11= 2+ 3(1+2)$
$u_{3}= 20= 2+ 3(1+2+3)$
$u_{4}= 32= 2+ 3(1+2+3+4)$
$\vdots$
$u_{29}=2+3(1+2+\cdots+29)$
$u_{29}=2+3(29)(15)$
$u_{29}=1307$

$\therefore$ Pilihan yang sesuai ialah $(A)\ 1307$

8. Titik puncak fungsi $g(x)=x^{2}-3x-4$ adalah...
$\begin{align}
(A)\ & \left(\dfrac{3}{2}, -\dfrac{25}{4} \right) \\
(B)\ & \left(\dfrac{3}{4}, -\dfrac{25}{4} \right) \\
(C)\ & \left(-1, 0 \right) \\
(D)\ & \left(4, 0 \right) \\
\end{align}$
Alternatif Pembahasan:

Untuk mencari titik puncak sebuah fungsi kuadrat, kita butuh sedikit catatan ihwal fungsi kuadarat yaitu
$y= a{\color{Red} x}^{2}+b{\color{Red} x}+c$ titik puncak (titik balik) $\left ( -\dfrac{b}{2a},-\dfrac{D}{4a} \right )$
Jika kita terapkan pada barisan soal, maka
$a=5$
$b=-3$
$c=-4$
$x_{p}=-\dfrac{b}{2a}$
$x_{p}=-\dfrac{-3}{2(1)}=\dfrac{3}{2}$

$y_{p}=-\dfrac{D}{4a}$
$y_{p}=-\dfrac{b^{2}-4ac}{4(1)}$
$y_{p}=-\dfrac{9-4(1)(-4)}{4(1)}$
$y_{p}=-\dfrac{25}{4}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ \left(\dfrac{3}{4}, -\dfrac{25}{4} \right)$

9. Lima bilangan membentuk deret geometri. Jika suku tengah deret tersebut sama dengan $5$, hasil kali suku-sukunya adalah...
$\begin{align}
(A)\ & 3512 \\
(B)\ & 3521 \\
(C)\ & 3152 \\
(D)\ & 3125 \\
\end{align}$
Alternatif Pembahasan:

Lima bilangan membentuk deret geometri, dengan suku tengah ialah $5$ maka deret itu mampu kita misalkan
$a, ar, ar^{2}, ar^{3}, ar^{4}$
$a, ar, 5, ar^{3}, ar^{4}$
Hasil kali kelima suku tersebut adalah...
$\begin{align}
& a \times ar \times ar^{2} \times ar^{3} \times ar^{4} \\
&= a^{1+1+1+1+1}r^{1+2+3+4} \\
&= a^{5}r^{10} \\
&= \left( a r^{2} \right) ^{5} \\
&= (5) ^{5} \\
&= 3125
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 3125$


10. Enam buah bilangan deret aritmetika. Jumlah empat bilangan pertama ialah $58$. Jumlah empat bilangan terakhir ialah $114$. Suku kesepuluh barisan tersebut adalah...
$\begin{align}
(A)\ & 57 \\
(B)\ & 67 \\
(C)\ & 77 \\
(D)\ & 87 \\
\end{align}$
Alternatif Pembahasan:

Enam bilangan membentuk deret aritmatika,
$u_{1}+u_{2}+u_{3}+u_{4}=58$

$\begin{align}
u_{1}+u_{2}+u_{3}+u_{4} & = 58 \\
a+a+b+a+2b+a+3b & = 58 \\
4a+6b & = 58 \\
2a+3b & = 29
\end{align}$

$\begin{align}
u_{3}+u_{4}+u_{5}+u_{6} & = 114 \\
a+2b+a+3b+a+4b+a+5b & = 114 \\
4a+14b & = 114 \\
2a+7b & = 57
\end{align}$

$\begin{array}{c|c|cc}
2a+7b = 57 & \\
2a+3b = 29 & (-)\\
\hline
4b = 28 & \\
b = 7 & a= 4
\end{array} $

$\begin{align}
u_{10} & = a+9b \\
& = 4+9(7) \\
& = 4+63 \\
& = 67
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 67$

11. Dari suatu survei diperoleh data bahwa rataan waktu berguru efektif siswa di rumah ialah $3$ jam $36$ menit setiap harinya. Jika data rataan ini digambarkan dalam bentuk diagram lingkaran, maka besarnya sudut pusat sektor lingkaran yang menggambarkan rataan berguru tersebut adalah...
$\begin{align}
(A)\ & 51 \\
(B)\ & 54 \\
(C)\ & 57 \\
(D)\ & 60
\end{align}$
Alternatif Pembahasan:

$3$ jam $36$ menit setara dengan $3,6$ jam. Sudut pusat sektor lingkaran untuk $24$ jam dalah $360$ sehingga untuk $3,6$ jam dalam sudut pusat lingkaran adalah...
$\begin{align}
\dfrac{3,6}{24} \times 360 & = \dfrac{3,6}{24} \times 360 \\
& = \dfrac{36}{240} \times 360 \\
& = \dfrac{3}{20} \times 360 \\
& = 3 \times 18 \\
& = 54
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 54$

12. Jika nilai rataan ulangan matematika di kelas IX ialah $6,8$ dan nilai rataan siswanya ialah $7$, sedangkan nilai rataan siswinya ialah $6,5$, maka perbandingan banyaknya siswa dan siswi di kelas tersebut adalah...
$\begin{align}
(A)\ & 2:3 \\
(B)\ & 4:5 \\
(C)\ & 3:2 \\
(D)\ & 5:4
\end{align}$
Alternatif Pembahasan:

Sebagai catatan sederhana untuk mengerjakan soal diatas ialah rata-rata gabungan yaitu $\bar{x}_{gab}=\dfrac{\bar{x}_{1} \cdot n_{1}+\bar{x}_{2} \cdot n_{2}}{n_{1}+n_{2}}$.

$\begin{align}
\bar{x}_{gab} & = \dfrac{\bar{x}_{pa} \cdot n_{pa}+\bar{x}_{pi} \cdot n_{pi}}{n_{pa}+n_{pi}} \\
6,8 & = \dfrac{7 \cdot n_{pa}+6,5 \cdot n_{pi}}{n_{pa}+n_{pi}} \\
6,8 \left(n_{pa}+n_{pi} \right) & = 7 \cdot n_{pa}+6,5 \cdot n_{pi} \\
6,8 \cdot n_{pa}+ 6,8 \cdot n_{pi} & = 7 \cdot n_{pa}+6,5 \cdot n_{pi} \\
6,8 \cdot n_{pi}- 6,5 \cdot n_{pi} & = 7 \cdot n_{pa}-6,8 \cdot n_{pa} \\
0,3 \cdot n_{pi} & = 0,2 \cdot n_{pa} \\
\dfrac{n_{pi}}{n_{pa}} & = \dfrac{0,2}{0,3} \\
\dfrac{n_{pi}}{n_{pa}} & = \dfrac{2}{3}
\end{align}$
Maka perbandingan banyaknya siswa dan siswi di kelas tersebut ialah $2:3$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 3:2$

13. Diketahui fungsi $f(x)$ memenuhi persamaan $2f(2x)-\dfrac{f\left(\dfrac{1}{x}\right)}{x}=x^{2}$, untuk $x \neq 0$, maka nilai $f(1)=\cdots$
$\begin{align}
(A)\ & \dfrac{5}{4} \\
(B)\ & \dfrac{3}{4} \\
(C)\ & \dfrac{2}{4} \\
(D)\ & \dfrac{1}{4}
\end{align}$
Alternatif Pembahasan:

$2f(2x)-\dfrac{f\left(\dfrac{1}{x}\right)}{x}=x^{2}$
Fungsi diatas berlaku untuk sembarang nilai $x \neq 0$, maka:
untuk $x=\dfrac{1}{2}$
$\begin{align}
2f\left(2 \left(\dfrac{1}{2} \right)\right)-\dfrac{f\left(\dfrac{1}{\dfrac{1}{2}}\right)}{\dfrac{1}{2}} &= \left(\dfrac{1}{2}\right)^{2} \\
2f(1)-\dfrac{f(2)}{\dfrac{1}{2}}&=\dfrac{1}{4} \\
2f(1)-2f(2)&=\dfrac{1}{4} \\
\end{align}$

untuk $x=1$
$\begin{align}
2f(2)-\dfrac{f(1)}{1} &= 1^{2} \\
2f(2)- f(1) &= 1
\end{align}$

$\begin{array}{c|c|cc}
2f(1)- 2f(2) = \dfrac{1}{4} & \\
2f(2)- f(1) = 1 & (+)\\
\hline
f(1) = \dfrac{5}{4}
\end{array} $

$\therefore$ Pilihan yang sesuai ialah $(A)\ \dfrac{5}{4}$

14. Grafik berikut menyampaikan nilai matematika $40$ orang siswa.
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Nilai yang dinyatakan lulus ialah nilai yang tidak kurang dari $64,5$, maka banyak siswa yang lulus adalah...orang.
$\begin{align}
(A)\ & 15 \\
(B)\ & 13 \\
(C)\ & 12 \\
(D)\ & 11
\end{align}$
Alternatif Pembahasan:

Catatan yang perlu kita buka untuk mendiskusikan ini ialah statistika data berkelompok. Dari garfik diatas mampu kita susun menjadi tabel distribusi frekuensi menjadi ibarat berikut dibawah ini.

Nilai Ulangan
Interval Nilai Frekuensi
$31 - 40$ $14$
$41 - 50$ $4$
$51 - 60$ $9$
$61 - 70$ $5$
$71 - 80 $ $8$
Jumlah $40$
Kita misalkan jumlah siswa yang tidak lulus ialah $x$ dan nilai siswa tidak boleh kurang dari $64,5$ berada pada kelas $61-70$, dari kelas tersebut mampu kita peroleh beberapa data:
  • tepi bawah kelas $61-70$ ialah $60,5$
  • frekuensi kumulatif sebelum kelas $61-70$ ialah $9+4+14$
  • panjang kelas $61-70$ ialah $10$
  • frekuensi kelas $61-70$ ialah $5$
Dengan menggunakan aturan menghitung "quartil" data berkelompok kita peroleh;
$\begin{align}
64,5 & =60,5+\left(\dfrac{x-(9+4+14)}{5}\right)10 \\
64,5-60,5 & = \left(\dfrac{x-27}{5}\right)10 \\
4 & = (x-27)2 \\
4 & = 2x-54 \\
4+54 & = 2x \\
\dfrac{58}{2} & = x \\
29 & = x
\end{align}$
Karena yang tidak lulus ada $29$, maka yang lulus ialah $40-29=11$ siswa.

$\therefore$ Pilihan yang sesuai ialah $(D)\ 11$

15. Seorang pedagang membeli $12\ kg$ beras jenis A seharga $Rp11.000/kg$ dan $18\ kg$ beras jenis B seharga $Rp10.000/kg$. Kedua jenis beras tersebut di campur dan dijual kembali. Agar pedagang tersebut mendapatkan untung $10\%$ setiap $kg$ beras, maka beras tersebut dijual seharga...
$\begin{align}
(A)\ & Rp11.440 \\
(B)\ & Rp11.400 \\
(C)\ & Rp10.440 \\
(D)\ & Rp10.400
\end{align}$
Alternatif Pembahasan:

Modal yang dikeluarkan pedagang ialah $12 \times 11.000=132.000$ ditambah $18 \times 10.000=180.000$, totalnya ialah $312.000$.
Keuntungan yang ingin diperoleh ialah $10\%$ sehingga harga total penjualan adalah:
$312.000+10\% \times 312.000$
$=312.000+31.200$
$=343.200$
Dari total penjualan $343.200$ maka harga jual per $kg$ ialah $343.200 \div 30=11.440$

$\therefore$ Pilihan yang sesuai ialah $(A)\ Rp11.440$

16. Gambar berikut ini ialah sebuah segitiga sama sisi dengan panjang sisi $8\ cm$, luas daerah yang diarsir adalah...$cm^{2}$
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
$\begin{align}
(A)\ & 16\sqrt{3}-12 \pi \\
(B)\ & 16\sqrt{3}-8 \pi \\
(C)\ & 16\sqrt{3}-6 \pi \\
(D)\ & 16\sqrt{3}-3 \pi \\
\end{align}$
Alternatif Pembahasan:

Luas segitiga sama sisi mampu kita hitung dengan mengunakan luas segitiga kalau diketahui dua sisi satu sudut (*jika tanpa harus menghitung tinggi) yaitu:
$L=\dfrac{1}{2}(a)(b) sin\ C$
$L=\dfrac{1}{2}(8)(8) sin\ 60$
$L=(32) \dfrac{1}{2}\sqrt{3}$
$L=16\sqrt{3}$

 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Untuk menghitung luas lingkaran, kita butuh panjang jari-jari ($r$);
Dengan memperhatikan gambar segitiga $OPB$ siku-siku di $P$ dan sudut $OBP=60^{\circ}$ maka berlaku:
$\begin{align}
sin\ 60^{\circ} & = \dfrac{OP}{OB} \\
\dfrac{1}{2}\sqrt{3} & = \dfrac{r}{4} \\
2\sqrt{3} & = r
\end{align}$
Luas lingakaran ialah $\pi r^{2}= \pi (2\sqrt{3})^{2}=12\pi$, dan daerah yang diarsir ialah luas segitiga dikurang luas setengah lingkaran yaitu $16\sqrt{3}-6 \pi$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 16\sqrt{3}-6 \pi$

17. Pernyataan berikut yang benar adalah...
$(A)$ Prisma segi enam memiliki $8$ titik sudut, $12$ sisi dan $18$ rusuk
$(B)$ Prisma segi delapan memiliki $16$ titik sudut, $10$ sisi dan $24$ rusuk
$(C)$ Limas segi enam memiliki $6$ titik sudut, $7$ sisi dan $12$ rusuk
$(D)$ Limas segi delapan memiliki $9$ titik sudut, $11$ sisi, dan $8$ rusuk
Alternatif Pembahasan:

  • Prisma segi enam memiliki $12$ titik sudut, $8$ sisi dan $18$ rusuk
  • Prisma segi delapan memiliki $16$ titik sudut, $10$ sisi dan $24$ rusuk
  • Limas segi enam memiliki $7$ titik sudut, $7$ sisi dan $12$ rusuk
  • Limas segi delapan memiliki $9$ titik sudut, $9$ sisi dan $16$ rusuk

$\therefore$ Pilihan yang sesuai ialah $(B)$ Prisma segi delapan memiliki $16$ titik sudut, $10$ sisi dan $24$ rusuk

18. perhatikan Gambar berikut;
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Sebuah kubus kayu dengan panjang sisi $3,5\ cm$ dibubut sehingga berubah bentuk menjadi bola. Jika diameter bola sama dengan panjang sisi kubus, volue kayu yang terbuang saat dibubut adalah...$cm^{3}$
$\begin{align}
(A)\ & 19\dfrac{3}{12} \\
(B)\ & 20\dfrac{5}{12} \\
(C)\ & 21\dfrac{3}{12} \\
(D)\ & 22\dfrac{5}{12}
\end{align}$
Alternatif Pembahasan:

Konsep soal ini sama dengan sebuah bola dimasukkan kedalam sebuah kubus yang berisi air maka banyak air yang tumpah ialah selisih volume kubus dan volume bola.
Volume Kubus
$V_{k}=\left( \dfrac{7}{2} \right)^{3}$
$V_{k}= \dfrac{7^{3}}{8} $

Volume Bola
$V_{b}=\dfrac{4}{3} \pi r^{3} $
$V_{b}=\dfrac{4}{3} \pi \left( \dfrac{7}{4} \right)^{3} $
$V_{b}=\dfrac{4}{3} \cdot \dfrac{7^{3}}{4^{3}} \pi $
$V_{b}=\dfrac{7^{3}}{3 \cdot 4^{2}} \cdot \dfrac{22}{7} $
$V_{b}=\dfrac{11 \cdot 7^{2}}{3 \cdot 8} $

Banyak kayu yang terbuang adalah:
$\begin{align}
V_{k}-V_{b} & = \dfrac{7^{3}}{8} - \dfrac{11 \cdot 7^{2}}{3 \cdot 8} \\
& = \dfrac{7^{2}}{8} \left(\dfrac{7}{1} - \dfrac{11}{3} \right)\\
& = \dfrac{49}{8} \left(\dfrac{21}{3} - \dfrac{11}{3} \right)\\
& = \dfrac{49}{8} \cdot \dfrac{10}{3} \\
& = \dfrac{49}{4} \cdot \dfrac{5}{3} \\
& = \dfrac{245}{12}= 20\dfrac{5}{12}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 20\dfrac{5}{12}$


19. perhatikan Gambar berikut;
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Luas daerah yang diarsir adalah...$cm^{2}$
$\begin{align}
(A)\ & 24- 12\pi \\
(B)\ & 24- 8\pi \\
(C)\ & 24- 6\pi \\
(D)\ & 24- 4\pi
\end{align}$
Alternatif Pembahasan:

Untuk menghitung luas daerah yang diarsi diatas kita butuh sedikit catatan ihwal lingkaran dalam segitiga yaitu untuk mencari jari-jari lingkaran dalam segitiga, yaitu $r=\dfrac{L_{\bigtriangleup}}{s}$ dimana $s=\dfrac{1}{2}(a+b+c)$.

Dari gambar mampu kita lihat bahwa segitiga ialah segitiga siku-siku sehingga panjang sisi-sisi segitiga ialah $6,\ 8,\ 10$
$r=\dfrac{L_{\bigtriangleup}}{s}$
$r=\dfrac{\dfrac{1}{2}(6)(8)}{\dfrac{1}{2}(6+8+10)}$
$r=\dfrac{48}{24}$
$r=2$

Luas Lingkaran
$L_{\bigcirc}= \pi r^{2} $
$L_{\bigcirc}= \pi (2)^{2} $
$L_{\bigcirc}= 4\pi $

Luas daerah yang diarsir adalah:
$\begin{align}
L_{\bigtriangleup}-L_{\bigcirc} & = \dfrac{1}{2}(6)(8) - 4 \pi \\
& = 24 - 4 \pi
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 24- 4\pi$

20. Perhatikan gambar berikut ini!
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Jika
$\angle \alpha=3x^{\circ} -y^{\circ}-15^{\circ}$
$\angle \beta=2y^{\circ}$
$\angle \delta=y^{\circ}-x^{\circ}+85^{\circ}$
$\angle \theta=2x^{\circ}+y^{\circ}-20^{\circ}$
Maka nilai dari $x+y=\cdots$
$\begin{align}
(A)\ & 85^{\circ} \\
(B)\ & 80^{\circ} \\
(C)\ & 55^{\circ} \\
(D)\ & 30^{\circ}
\end{align}$
Alternatif Pembahasan:

Dari gambar kita ketahui bahwa $\angle \alpha$ dan $\angle \delta$ sehadap sehingga
$\begin{align}
\angle \alpha + \angle \delta & = 180^{\circ}\\
3x^{\circ} +y^{\circ}-15^{\circ}-y^{\circ}-x^{\circ}+85^{\circ} & = 180^{\circ} \\
2x^{\circ} +70^{\circ} & = 180^{\circ} \\
2x^{\circ} & = 110^{\circ} \\
x^{\circ} & = 55^{\circ}
\end{align}$

Dari gambar kita ketahui bahwa $\angle \alpha$ dan $\angle \delta$ sehadap sehingga
$\begin{align}
\angle \beta + \angle \theta & = 180^{\circ}\\
2y^{\circ} +2x^{\circ}+y^{\circ}-20^{\circ} & = 180^{\circ} \\
2x^{\circ} +3y^{\circ}-20^{\circ} & = 180^{\circ} \\
2(55^{\circ}) +3y^{\circ} & = 200^{\circ} \\
3y^{\circ} & = 200^{\circ}-110^{\circ} \\
3y^{\circ} & = 90^{\circ} \\
y^{\circ} & = 30^{\circ}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(A)\ 85^{\circ}$

21. Diketahui $\angle A$ dan $\angle B$ merupakan pasangan sudut dalam berseberangan. Jika $\angle A=(3x+10)^{\circ}$ dan $\angle B=(x+42)^{\circ}$, maka nilai $x=\cdots$
$\begin{align}
(A)\ & 40^{\circ} \\
(B)\ & 32^{\circ} \\
(C)\ & 16^{\circ} \\
(D)\ & 8^{\circ}
\end{align}$
Alternatif Pembahasan:

Karena $\angle A$ dan $\angle B$ merupakan pasangan sudut dalam berseberangan, maka:
$\begin{align}
\angle A & = \angle B \\
(3x+10)^{\circ} & = (x+42)^{\circ} \\
3x+10 & = x+42 \\
3x-x & = 42-10 \\
2x & = 32 \\
x & = 16
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 16^{\circ}$

22. Perhatikan gambar berikut ini!
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Jika $AE=12\ cm$, $BE=15\ cm$, $BC=7\ cm$, dan $BD=25\ cm$ maka $CD-CE=\cdots cm$
$\begin{align}
(A)\ & 8 \\
(B)\ & 7 \\
(C)\ & 4 \\
(D)\ & 2
\end{align}$
Alternatif Pembahasan:

Dari gambar di atas ada beberapa segitiga siku-siku, sehingga untuk menghitung unsur-unsur segitiga yang belum diketahui kita cari dengan menggunakan teorema phytagoras.

Dari $\bigtriangleup ABE$
$\begin{align}
AB^{2} & = BE^{2}-AE^{2} \\
AB^{2} & = 15^{2}-12^{2} \\
AB^{2} & = 225-144=81 \\
AB & = 9
\end{align}$

Dari $\bigtriangleup ACE$
$\begin{align}
CE^{2} & = AE^{2}+AC^{2} \\
CE^{2} & = 12^{2}+16^{2} \\
CE^{2} & = 144+256=400 \\
CE & = 20
\end{align}$

Dari $\bigtriangleup BCD$
$\begin{align}
CD^{2} & = BD^{2}-BC^{2} \\
CD^{2} & = 25^{2}-7^{2} \\
CD^{2} & = 625-49=576 \\
CD & = 24
\end{align}$

$CD-CE=24-20=4$
$\therefore$ Pilihan yang sesuai ialah $(C)\ 4$

23. Diketahui segitiga sama kaki $ABC$, dengan $AC=BC$ kalau $AC=5x-5\ cm$, $BC=2x+3y+7\ cm$, $AB=14\ cm$ dan keliling segitiga $64\ cm$ maka luas segitiga tersebut adalah...
$\begin{align}
(A)\ & 24\ cm^{2} \\
(B)\ & 48\ cm^{2} \\
(C)\ & 144\ cm^{2} \\
(D)\ & 168\ cm^{2}
\end{align}$
Alternatif Pembahasan:

Dari apa yang disampaikan pada soal, segitiga ABC adlah sama kaki, maka:
$\begin{align}
AC & = BC \\
5x-5 & = 2x+3y+7 \\
3x-3y & = 12
\end{align}$

$\begin{align}
AC+BC+AB & = 64 \\
5x-5+2x+3y+7+14 & = 64 \\
7x+3y+16 & = 64 \\
7x+3y & = 48
\end{align}$

$\begin{array}{c|c|cc}
3x-3y = 12 & \\
7x+3y = 48 & (+)\\
\hline
10x = 60 & \\
x = 6 & y = 2
\end{array} $

$AC=25\ cm$, $BC=25\ cm$, $AB=14\ cm$
Karena $ABC$ ialah segitiga sama kaki, maka dengan mengunakan teorema phytagoras mampu kita hitung tinggi segitiga yaitu:
$t^{2}=25^{2}-7^{2}$
$t^{2}=625 -49$
$t^{2}=576$
$t=24$

$\begin{align}
[\bigtriangleup BCD] & = \dfrac{1}{2} (14) (24) \\
& = 168
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 168\ cm^{2}$

24. Sebuah garis lurus memiliki persamaan $y=mx+c$. Garis tersebut melalui titik $(4,5)$ dan $(2,1)$. Nilai dari $m+c=\cdots$
$\begin{align}
(A)\ & 5 \\
(B)\ & 1 \\
(C)\ & -5 \\
(D)\ & -1
\end{align}$
Alternatif Pembahasan:

persamaan garis yang melalui titik $\left(x_{1},y_{1}\right)$ dan $\left(x_{2},y_{2}\right)$ adalah:
$\begin{align}
\dfrac{y-y_{1}}{y_{2}-y_{1}} & = \dfrac{x-x_{1}}{x_{2}-x_{1}} \\
\dfrac{y-5}{1-5} & = \dfrac{x-4}{2-4} \\
\dfrac{y-5}{-4} & = \dfrac{x-4}{-2} \\
y-5 & = 2x-8 \\
y & = 2x-3
\end{align}$

Nilai dari $m+c=2-3=-1$

$\therefore$ Pilihan yang sesuai ialah $(D)\ -1$

25. Garis $k$ melalui titik $(6,-1)$ dan tegak lurus dengan garis $3x-2y=12$. Persamaan garis $k$ adalah...
$\begin{align}
(A)\ & 2x-3y=9 \\
(B)\ & 2x+3y=9 \\
(C)\ & 3x+2y=3 \\
(D)\ & 3x-2y=3
\end{align}$
Alternatif Pembahasan:

Persamaan garis yang akan kita cari ialah garis yang tegak lurus dengan garis $3x-2y=12$ dimana $m_{1}=\dfrac{3}{2}$, sehingga gradien garis yang akan kita cari ialah $m_{2}=-\dfrac{2}{3}$. Syarat garis yang tegak lurus $m_{1} \cdot m_{2}=-1$.

persamaan garis yang melalui titik $\left(x_{1},y_{1}\right)$ dan bergradien $m$ adalah:
$\begin{align}
y-y_{1} & = m \left( x-x_{1} \right) \\
y-(-1) & = -\dfrac{2}{3} \left( x-6 \right) \\
y+1 & = -\dfrac{2}{3}x+4 \\
y & = -\dfrac{2}{3}x+3 \\
3y & = -2x+9 \\
3y +2x & = 9
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 2x+3y=9$

26. Diketahui pasangan berurutan $(4,p)$ anggota pemetaan $f$, pernyataan beriktu benar, kecuali...
$(A)$ $4$ anggota domain fungsi $f$
$(B)$ $4$ anggota kodomain fungsi $f$
$(C)$ $p$ anggota kodomain fungsi $f$
$(D)$ $p$ anggota range fungsi $f$
Alternatif Pembahasan:

Dari ketiga pernyataan diatas yang tidak tepat ialah pernyataan "$4$ anggota kodomain fungsi $f$"

$\therefore$ Pilihan yang sesuai ialah $(B)$ $4$ anggota kodomain fungsi $f$

27. Pemfaktoran bentuk aljabar $-8x^{3}+27y^{2}$ adalah...
$\begin{align}
(A)\ & (-2x+3y)(-4x^{2}+9y^{2}+6xy) \\
(B)\ & (-2x+3y)(-4x^{2}+9y^{2}-6xy) \\
(C)\ & (-2x+3y)(4x^{2}+9y^{2}+6xy) \\
(D)\ & (-2x+3y)(-4x^{2}-9y^{2}-6xy)
\end{align}$
Alternatif Pembahasan:

Pemfaktoran bentuk aljabar ini, kita coba dengan menjabarkan jawabannya:
$\begin{align}
& (-2x+3y)(-4x^{2}+9y^{2}+6xy) \\
& = 8x^{3}-18xy^{2}-12x^{2}y-12x^{2}y+27y^{3}+18xy^{2} \\
& = 8x^{3} -24x^{2}y +27y^{3}
\end{align}$

$\begin{align}
& (-2x+3y)(-4x^{2}+9y^{2}-6xy) \\
& = 8x^{3}-18xy^{2}-12x^{2}y+12x^{2}y+27y^{3}-18xy^{2} \\
& = 8x^{3}-36xy^{2}+27y^{3}
\end{align}$

$\begin{align}
& (-2x+3y)(4x^{2}+9y^{2}+6xy) \\
& = -8x^{3}-18xy^{2}-12x^{2}y+12x^{2}y+27y^{3}+18xy^{2} \\
& = -8x^{3}+27y^{3}
\end{align}$

$\begin{align}
& (-2x+3y)(-4x^{2}-9y^{2}-6xy) \\
& = 8x^{3}+18xy^{2}+12x^{2}y-12x^{2}y-27y^{3}-18xy^{2} \\
& = 8x^{3}-27y^{3}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(C)\ (-2x+3y)(4x^{2}+9y^{2}+6xy)$


28. Dua lembar kain yang berbentuk segitiga dijahit sehingga membentuk bangun datar layang-layang. Alas kedua kain ini masing-masing $20$ cm. Jika tinggi kain pertama $28$ cm sedangkan tinggi kain yang kedua $36$ cm, luas layang-layang adalah...
$\begin{align}
(A)\ & 1.280 \\
(B)\ & 640 \\
(C)\ & 320 \\
(D)\ & 160
\end{align}$
Alternatif Pembahasan:

layang-layang dibentuk dari dua buah segitiga sehingga luas layang-layang ialah jumlah luas kedua segitiga.

$\begin{align}
Luas & = L_{1}+L_{2} \\
& = \dfrac{1}{2} (20)(28)+\dfrac{1}{2} (20)(36) \\
& = 280+360 \\
& = 640
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B).\ 640$

29. Pasangan ruas garis berikut yang mampu membentuk segitiga ialah segitiga dengan panjang sisi...
$\begin{align}
(A)\ & 7,4,12 \\
(B)\ & 10,6,20 \\
(C)\ & 7,11,19 \\
(D)\ & 21,11,12
\end{align}$
Alternatif Pembahasan:

Sebuah segitiga mampu dibangun oleh tiga buah ruas garis dengan syarat "jumlah panjang dua garis harus lebih dari garis yang lain"

  • $7,4,12$ tidak memenuhi alasannya ialah $7+4 \lt 12$
  • $10,6,20$ tidak memenuhi alasannya ialah $10+6 \lt 20$
  • $7,11,19$ tidak memenuhi alasannya ialah $7+11 \lt 19$
  • $21,11,12$ memenuhi karena:
    • $21+11 \gt 12$
    • $21+12 \gt 11$
    • $11+12 \gt 21$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 21,11,12$


30.Gambar berikut ialah segitiga yang disusun dari batang korek api. Banyak batang korek api yang dibutuhkan untuk membuat pola ke-6 adalah...
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
Kecepatan rata-rata dari sebuah mobil yang ditunjukkan grafik perjalanan diatas adalah...
$\begin{align}
(A)\ & 36 \\
(B)\ & 48 \\
(C)\ & 63 \\
(D)\ & 84
\end{align}$
Alternatif Pembahasan:

Dari gambar diatas banyak korek api yang diperlukan pada setiap pola adalah:

  • (1): $3=1 \times 3$
  • (2): $9=(1+2) \times 3$
  • (3): $18=(1+2+3) \times 3$
  • (4): $30=(1+2+3+4) \times 3$
  • (5): $(1+2+3+4+5) \times 3$
  • (6): $(1+2+3+4+5+6) \times 3=63$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 63$

31. Hasil penelitian terhadap $56$ siswa diperoleh data sebagai berikut. $34$ siswa memiliki kakak, $15$ siswa memiliki kakak dan adik dan $10$ siswa tidak memiliki kakak maupun adik. Banyak siswa yang hanya memiliki adik adalah..
$\begin{align}
(A)\ & 12 \\
(B)\ & 15 \\
(C)\ & 24 \\
(D)\ & 27
\end{align}$
Alternatif Pembahasan:

Jika informasi pada soal kita sajikan dalam bentuk diagram venn, bentuknya kira-kira ibarat berikut ini;

 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018
  • $34$ memiliki kakak $K$ dan $15$ diantaranya juga punya adik $A$, jadi yang hanya punya kakak $K$ ialah $34-15=19$.
  • $10$ tidak memiliki kakak $K$ atau adik $A$
  • Yang hanya punya adik $A$ ialah $x$
$\begin{align}
n(K \cup A) & =n(K)+n(A)-n(K \cap A) \\
56-10 & =34 +15+x-15 \\
46 & =34+x \\
x & =46-34 \\
x & =12
\end{align}$
Banyak siswa yang hanya punya adik $A$ ialah $12$

$\therefore$ Pilihan yang sesuai ialah $(A)\ 12$

32. Jika $X \subset Y$, berlaku sifat berikut kecuali:
$\begin{align}
(A)\ & X \cap Y =X \\
(B)\ & X \cup Y =X \\
(C)\ & X - Y = \varnothing \\
(D)\ & Y - X = \varnothing
\end{align}$
Alternatif Pembahasan:

Berdasarkan sifat-sifat pada himpunan pernyataan yang tidak tepat ialah pernyataan $Y - X = \varnothing$ alasannya ialah $Y-X$ bukan himpunan kosong.

$\therefore$ Pilihan yang sesuai ialah $(D)\ Y - X = \varnothing$

33. Jumlah semua bilangan asli antara $20$ dan $140$ yang habis dibagi $3$ tetapi tidak habis dibagi $2$ adalah...
$\begin{align}
(A)\ & 1530 \\
(B)\ & 1540 \\
(C)\ & 1550 \\
(D)\ & 1560
\end{align}$
Alternatif Pembahasan:

Bilangan di antara $20$ dan $140$ yang habis dibagi $3$ ialah $21, 24, 27, \cdots , 135, 138$ ini ialah barisan aritmatika dengan $a=21$ dan $b=3$, maka jumlahnya adalah
$\begin{align}
U_{n} & = a+(n-1)b \\
138 & = 21+(n-1)3 \\
138 & = 21+3n-3 \\
138-18 & =3n \\
\dfrac{120}{3} & =n \\
40 & =n \\
S_{n} & = \dfrac{}{} \left( a+U_{n}\right) \\
S_{40} & = \dfrac{40}{2} \left( 21+138 \right) \\
& = 20 \left( 159 \right) \\
& = 3180
\end{align}$

Bilangan di antara $20$ dan $140$ yang habis dibagi $3$ dan $2$ ialah $24, 30, \cdots , 132, 138$ ini ialah barisan aritmatika dengan $a=24$ dan $b=6$, maka jumlahnya adalah
$\begin{align}
U_{n} & = a+(n-1)b \\
138 & = 24+(n-1)6 \\
138 & = 24+6n-6 \\
138-18 & =6n \\
\dfrac{120}{6} & =n \\
20 & =n \\
S_{n} & = \dfrac{n}{2} \left( a+U_{n}\right) \\
S_{20} & = \dfrac{20}{2} \left( 24+138 \right) \\
& = 10 \left( 162 \right) \\
& = 1620
\end{align}$

Jumlah bilangan yang habis dibagi $3$ tetapi tidak habis dibagi $2$ ialah $3180-1620=1560$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 1560$

34. Nilai dari
$\left ( 1-\dfrac{1}{2^{2}} \right )\left ( 1-\dfrac{1}{3^{2}} \right )\left ( 1-\dfrac{1}{4^{2}} \right )$$\cdots\left ( 1-\dfrac{1}{2018^{2}} \right )\left ( 1-\dfrac{1}{2019^{2}} \right )$
$\begin{align}
(A)\ & \dfrac{1010}{2019} \\
(B)\ & \dfrac{2020}{2019} \\
(C)\ & \dfrac{2019}{1010} \\
(D)\ & \dfrac{2019}{2020} \\
\end{align}$
Alternatif Pembahasan:

Untuk mengerjakan soal diatas, istilah yang digunakan dalam matematika ialah prinsip teleskoping

Bentuk diatas memiliki pola yang tersembunyi:
$\left ( 1-\dfrac{1}{2^{2}} \right )=\left ( 1-\dfrac{1}{2} \right )\left ( 1+\dfrac{1}{2} \right )=\left ( \dfrac{1}{2} \right )\left (\dfrac{3}{2} \right )$
$\left ( 1-\dfrac{1}{3^{2}} \right )=\left ( 1-\dfrac{1}{3} \right )\left ( 1+\dfrac{1}{3} \right )=\left ( \dfrac{2}{3} \right )\left (\dfrac{4}{3} \right )$
$\left ( 1-\dfrac{1}{3^{2}} \right )=\left ( 1-\dfrac{1}{4} \right )\left ( 1+\dfrac{1}{4} \right )=\left ( \dfrac{3}{4} \right )\left (\dfrac{5}{4} \right )$
$\left ( 1-\dfrac{1}{5^{2}} \right )=\left ( 1-\dfrac{1}{5} \right )\left ( 1+\dfrac{1}{5} \right )=\left ( \dfrac{4}{5} \right )\left (\dfrac{6}{5} \right )$
$\vdots$
$\left ( 1-\dfrac{1}{2018^{2}} \right )=\left ( 1-\dfrac{1}{2018} \right )\left ( 1+\dfrac{1}{2018} \right )=\left ( \dfrac{2017}{2018} \right )\left (\dfrac{2019}{2018} \right )$
$\left ( 1-\dfrac{1}{2019^{2}} \right )=\left ( 1-\dfrac{1}{2019} \right )\left ( 1+\dfrac{1}{2019} \right )=\left ( \dfrac{2018}{2019} \right )\left (\dfrac{2020}{2019} \right )$

Jika bentuk diatas kita kalikan ibarat yang diinginkan soal, maka:
$\left ( \dfrac{1}{2} \right )\left ( \dfrac{3}{2} \right )\left ( \dfrac{2}{3} \right )\left ( \dfrac{4}{3} \right )$$\cdots \left ( \dfrac{2018}{2019} \right )\left ( \dfrac{2019}{2020} \right )$
$=\left (\dfrac{1}{2} \right ) \left ( \dfrac{2020}{2019} \right )$
$=\left ( \dfrac{1010}{2019} \right )$

$\therefore$ Pilihan yang sesuai ialah $(A)\ \dfrac{1010}{2019}$


35. Seorang ibu dan anaknya bermain tebak warna dengan cara mengambil bola dari sebuah kotak $A$ dan memasukkannya kembali ke kotak $B$. Kotak $A$ beirisi $5$ bola merah, 7 bola kuning dan $3$ bola biru, sedangkan kotak $B$ berisi 3 bola merah, 5 bola kuning dan 3 bola biru. Aturan permainannya ialah pada pengambilan pertama ibu akan mengambil bola dari kotak $a$ dan memasukkanya ke kotak $B$, dilanjutkan dengan pada pengambilan kedua si anak akan mengambil satu bola dari kotak $B$ dan memasukkanya ke kotak $A$. Peluang insiden terambilnya bola warnanya sama pada setiap pengambilan bola adalah...
$\begin{align}
(A)\ & \dfrac{37}{90} \\
(B)\ & \dfrac{38}{90} \\
(C)\ & \dfrac{39}{90} \\
(D)\ & \dfrac{37}{90} \\
\end{align}$
Alternatif Pembahasan:

Untuk mencoba merampungkan soal teori peluang diatas, kita coba menuliskan hasil yang mungkin untuk hasil warna yang sama, yaitu Merah (A) dan Merah (B) atau Kuning (A) dan Kuning (B) atau Biru (A) dan Biru (B).

Peluang untuk insiden diatas kita coab kerjakan satu persatu:

  • Peluang Merah (A) dan Merah (B)
    $P(E_{1})=\dfrac{5}{15} \cdot \dfrac{4}{12}=\dfrac{20}{180}$
  • Peluang Kuning (A) dan kuning (B)
    $P(E_{2})=\dfrac{7}{15} \cdot \dfrac{6}{12}=\dfrac{42}{180}$
  • Peluang Biru (A) dan Biru (B)
    $P(E_{3})=\dfrac{3}{15} \cdot \dfrac{4}{12}=\dfrac{12}{180}$

Jika kita gabung peluang tiga kemungkina insiden diatas ialah $\dfrac{20}{180}+\dfrac{42}{180}+\dfrac{12}{180}=\dfrac{74}{180}=\dfrac{37}{90}$

$\therefore$ Pilihan yang sesuai ialah $(A)\ \dfrac{37}{90}$

36. Sebuah keluarga ingin memiliki $4$ orang anak. Peluang bahwa keluarga tersebut memiliki paling banyak $2$ orang anak laki-laki adalah...
$\begin{align}
(A)\ & \dfrac{5}{16} \\
(B)\ & \dfrac{11}{16} \\
(C)\ & \dfrac{14}{16} \\
(D)\ & \dfrac{15}{16} \\
\end{align}$
Alternatif Pembahasan:

Untuk $4$ orang anak, maka susunan jenis kelamin anak yang mungkin itu ada $16$ susunan yaitu:

  • 4 laki-laki: $LLLL$
  • 3 laki-laki dan 1 perempuan: $LLLP$; $LLPL$; $LPLL$; $PLLL$;
  • 2 laki-laki dan 2 perempan: $LLPP$; $LPLP$; $PLLP$; $LPPL$; $PLPL$; $PPLL$;
  • 1 laki-laki dan 3 perempuan: $PPPL$; $PPLP$; $PLPP$; $LPPP$;
  • 4 perempuan: $PPPP$

Paling banyak dua orang anak lelaki ada $11$ kemungkinan, maka peluang keluarga tersebut memiliki paling banyak $2$ orang anak laki-laki ialah $P(E)=\dfrac{n(E)}{n(S)}=\dfrac{11}{16}$.

$\therefore$ Pilihan yang sesuai ialah $(B)\ \dfrac{11}{16}$


37. Distribusi frekuensi pada tabel berikut menyampaikan nilai ujian matematika di suatu sekolah
Nilai Frekuensi
$4$ $a$
$5$ $46$
$6$ $80$
$7$ $62$
$8$ $24$
Jumlah $40$
Jika terdapat $a$ siswa yang bernilai $4$ dan nilai rataan ujian ini ialah $6$, maka banyaknya siswa di sekolah tersebut adalah...
$\begin{align}
(A)\ & 282 \\
(B)\ & 244 \\
(C)\ & 228 \\
(D)\ & 212
\end{align}$
Alternatif Pembahasan:

Rataan dari data di atas mampu kita hitung dengan rataan untuk data tunggal, yaitu:
$\begin{align}
\bar{x} & = \dfrac{x_{1} \cdot n_{1}+x_{2} \cdot n_{2}+x_{3} \cdot n_{3}+x_{4} \cdot n_{4}}{n_{1}+n_{2}+n_{3}+n_{4}} \\
6 & = \dfrac{4 \cdot a+5 \cdot 46+6 \cdot 80+7 \cdot 62+8 \cdot 24}{a+46+80+62+24} \\
6 & = \dfrac{4a+230+480+434+192}{a+212} \\
6a + 1272 & = 4a+1336 \\
6a-4a & = 1336-1272 \\
2a & = 64 \\
a & = 32
\end{align}$

Jumlah keseluruhan siswa ialah $a+212=32+212=244$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 244$

38. Sebuah mobil memerlukan $5$ liter bensin untuk menempuh jarak $60$ km, kalau mobil itu menghabiskan $40$ liter bensin, jarak yang yang ditempuh...km
$\begin{align}
(A)\ & 480 \\
(B)\ & 300 \\
(C)\ & 240 \\
(D)\ & 200
\end{align}$
Alternatif Pembahasan:

Untuk $60$ km dihabiskan $5$ liter maka untuk $1$ liter menepuh $12$ km.
Sehingga $40$ liter akan menempuh $40 \times 12 =480$ km.

$\therefore$ Pilihan yang sesuai ialah $(A)\ 480$

39. Netto dari sejumlah barang $540$ gram. Jika bruto setiap $45$ gram dengan tara $20\%$, banyak barang adalah...
$\begin{align}
(A)\ & 15 \\
(B)\ & 14 \\
(C)\ & 13 \\
(D)\ & 12
\end{align}$
Alternatif Pembahasan:

Bruto untuk $1$ barang ialah $45$ gram dan tara $20\%$ atau senilai dengan $20\% \times 45=9$. Sehingga netto setiap barang ialah $45-9=36$
Sehingga dengan netto barang $540$ gram, banyak barang ialah $540 \div 36=15$.

$\therefore$ Pilihan yang sesuai ialah $(A)\ 15$

40. Diameter suatu tabung ialah $16$ cm, dengan volume $1.408\ cm^{3}$, maka tinggi tabung adalah...
$\begin{align}
(A)\ & 7 \\
(B)\ & 10 \\
(C)\ & 12 \\
(D)\ & 14
\end{align}$
Alternatif Pembahasan:

Volume tabung ialah $V_{t}=\pi r^{2} \cdot t$

$\begin{align}
V_{t} & =\pi r^{2} \cdot t \\
1.408 & =\dfrac{22}{7} 8^{2} \cdot t \\
\dfrac{1.408}{64} \cdot \dfrac{7}{22} & = t \\
7 & = t
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(A)\ 7$


Jika engkau tidak mampu menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Jika tertarik untuk menyimpan catatan calon guru di atas dalam bentuk file (.pdf) silahkan di download pada link berikut ini:
  • Soal Seleksi Akademik Matematika Ujian Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018 ๐Ÿ‘€ Download
  • Soal dan Pembahasan Seleksi Akademik Matematika Ujian Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018 ๐Ÿ‘€ Download
  • Soal Asli Seleksi Akademik Matematika Ujian Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018 ๐Ÿ‘€ Download
Semoga Bermanfaat dan pembahasan Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018 di atas masih jauh dari sempurna, jadi kalau ada masukan yang sifatnya membangun terkait dilema alternatif penyelesaian atau request pembahasan soal, silahkan disampaikan๐Ÿ˜ŠCMIIW

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Video pilihan khusus untuk Anda ๐Ÿ˜Š Cara Pilar (Pintar Bernalar) Pembagian Pecahan Tanpa Diubah Jadi Perkalian;
 Soal Seleksi Akademik Yayasan Soposurung  Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama YASOP) - SMAN 2 Balige 2018

Belum ada Komentar untuk "Soal Seleksi Akademik Masuk Asrama Yayasan Soposurung (Asrama Yasop) - Sman 2 Balige 2018"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel