Matematika Smp: Mencar Ilmu Bentuk Akar (*Soal Dan Pembahasan)

 Dengan bahasa sederhana disampaikan bahwa bentuk akar ialah akar dari bilangan rasional  Matematika SMP: Belajar Bentuk Akar (*Soal dan Pembahasan)Belajar Matematika Dasar Bentuk Akar. Dengan bahasa sederhana disampaikan bahwa bentuk akar ialah akar dari bilangan rasional yang akhirnya bilangan irasional.

contoh: $\sqrt{5}$, $\sqrt{7}$, $\sqrt{17}$, $\cdots$ ialah betuk akar alasannya akhirnya berupa bilangan irasional.

Sedangkan $\sqrt{9}$, $\sqrt{16}$, $\sqrt{36}$, $\dots$ bukan bentuk akar alasannya akhirnya ialah bilangan rasional.

Beberapa topik matematika yang dipelajari pada bangku SMP atau SMA, diantaranya adalah;

Penjumlahan Bentuk Akar

Penjumlahan bentuk akar konsepnya sama dengan penjumlahan yang lain, yaitu yang mampu dijumlahkan ialah yang sejenis. Bentuk akar yang dijumlahkan ialah ialah bentuk akar yang sejenis.
  • $a \sqrt[n]{m}+b \sqrt[n]{m}=\left (a+b \right )\sqrt[n]{m}$
  • $a \sqrt{m}+b \sqrt{m}=\left (a+b \right )\sqrt{m}$
contoh :
  1. $\sqrt{a}+\sqrt{a}=2\sqrt{a}$
  2. $2\sqrt{b}+3\sqrt{b}=5\sqrt{b}$
  3. $4\sqrt{5}+\sqrt{5}=5\sqrt{5}$
  4. $7\sqrt{6}+2\sqrt{6}=9\sqrt{6}$

Pengurangan Bentuk Akar

Pengurangan bentuk akar konsepnya sama dengan penjumlahan, yaitu yang mampu dikurangkan ialah yang sejenis. Bentuk akar yang dikurangkan ialah ialah bentuk akar yang sejenis.
  • $a \sqrt[n]{m}-b \sqrt[n]{m}=\left (a-b \right )\sqrt[n]{m}$
  • $a \sqrt{m}-b \sqrt{m}=\left (a-b \right )\sqrt{m}$
contoh :
  1. $\sqrt{a}-\sqrt{a}=0$
  2. $2\sqrt{b}-3\sqrt{b}=-\sqrt{b}$
  3. $4\sqrt{5}-\sqrt{5}=3\sqrt{5}$
  4. $7\sqrt{6}-2\sqrt{6}=5\sqrt{6}$

Perkalian Bentuk Akar

Perkalian bentuk akar konsepnya ialah dengan mengalikan bilangan atau variabel yang diluar akar dengan yang diluar akar dan mengalikan yang didalam akar dengan yang didalam akar. Dengan catatan jenis akarnya masih sejenis, misalnya akar pangkat 2 dengan akar pangkat 2 atau akar pangkat n dengan akar pangkat n ialah acuan akar yang sejenis.
  • $a \sqrt[n]{p} \times b \sqrt[n]{q}=\left (a \times b \right )\sqrt[n]{p \times q}$
  • $a \sqrt{p} \times b \sqrt{q}=\left (a \times b \right )\sqrt{p \times q}$
contoh:
  1. $a \sqrt{b} \times c\sqrt{d}=ac\sqrt{bd}$
  2. $m \sqrt{n} \times x\sqrt{y}=mx\sqrt{ny}$
  3. $3 \sqrt{5} \times 2\sqrt{3}=6\sqrt{15}$
  4. $\sqrt{2} \times 3\sqrt{6}=3\sqrt{12}=3\sqrt{12}$
Untuk soal nomor 4 diatas bentuk $3\sqrt{12}$ masih mampu disederhanakan menjadi;
$3\sqrt{12}=3\sqrt{4 \times 3}=3 \sqrt{4} \times \sqrt{3}=6 \sqrt{3}$

Pembagian Bentuk Akar

Pembagian bentuk akar konsepnya sama dengan perkalian bentuk akar yaitu dengan membagikan yang didalam akar dengan yang didalam akar dan membagikan yang didalam akar dengan yang didalam akar. Tetap memperhatikan akarnya masih sejenis, misalnya akar pangkat 3 dengan akar pangkat 3 atau akar pangkat n dengan akar pangkat n ialah acuan akar yang sejenis
  • $\dfrac{p\sqrt[n]{a}}{q\sqrt[n]{b}}=\dfrac{p}{q}\sqrt[n]{\dfrac{a}{b}}$
  • $\dfrac{p\sqrt{a}}{q\sqrt{b}}=\dfrac{p}{q}\sqrt{\dfrac{a}{b}}$
contoh:
  1. $\dfrac{6\sqrt{6}}{3\sqrt{2}}=\dfrac{6}{3}\sqrt{\dfrac{6}{2}}=2\sqrt{3}$
  2. $\dfrac{p\sqrt{a}}{q\sqrt{a}}=\dfrac{p}{q}\sqrt{\dfrac{a}{a}}=\dfrac{p}{q}$
  3. $\dfrac{\sqrt{18}}{\sqrt{2}}=\sqrt{\dfrac{18}{2}}=\sqrt{9}=3$
  4. $\dfrac{5\sqrt{2}}{3\sqrt{5}}=\dfrac{5}{3}\sqrt{\dfrac{2}{5}}$
Untuk soal nomor 4 diatas bentuk $\dfrac{5}{3}\sqrt{\dfrac{2}{5}}$ masih mampu disederhanakan dengan istilah merasionalkan penyebut, caranya:
$\dfrac{5}{3}\sqrt{\dfrac{2}{5}}=\dfrac{5}{3}\dfrac{\sqrt{2}}{\sqrt{5}}$
$\dfrac{5}{3}\sqrt{\dfrac{2}{5}}=\dfrac{5}{3}\dfrac{\sqrt{2}}{\sqrt{5}}\times \dfrac{\sqrt{5}}{\sqrt{5}}$
$\dfrac{5}{3}\sqrt{\dfrac{2}{5}}=\dfrac{5}{3}\dfrac{\sqrt{10}}{\sqrt{25}}$
$\dfrac{5}{3}\sqrt{\dfrac{2}{5}}=\dfrac{5}{3}\dfrac{\sqrt{10}}{5}$
$\dfrac{5}{3}\sqrt{\dfrac{2}{5}}=\dfrac{1}{3}\sqrt{10}$

Selama beberapa tahun terakhir soal bentuk akar ini selalu dikeluarkan pada soal Ujian Nasional Matematika tingkat SMP. Jadi pastikan bahwa Anda atau teman atau anak kita mampu menganggap bentuk akar itu bukan suatu masalah, hanya sekedar soal saja.

Beberapa soal berikut mampu dijadikan soal latihan untuk pemantapan

1. Soal UNBK Matematika Tahun 2018 (*Soal Lengkap)

Bentuk sederhana dari $\dfrac{2\sqrt{3}+3\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ adalah...
$\begin{align}
(A)\ & 12-5\sqrt{6} \\
(B)\ & 12 -\sqrt{6} \\
(C)\ & -5-\sqrt{6} \\
(D)\ & 6-5\sqrt{6}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \dfrac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\
& = \dfrac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}+\sqrt{2}} \times \dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} \\
& = \dfrac{6-2\sqrt{6}-3\sqrt{6}+6}{3-2} \\
& = \dfrac{12-5\sqrt{6}}{1} \\
& = 12-5\sqrt{6}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(A)\ 12-5\sqrt{6}$

2. Soal UNBK Matematika Tahun 2018 (*Soal Lengkap)

Bentuk sederhana dari $\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{20}-\sqrt{12}}$ adalah...
$\begin{align}
(A)\ & 4+\sqrt{15} \\
(B)\ & \dfrac{4-\sqrt{15}}{2} \\
(C)\ & 4+2\sqrt{15} \\
(D)\ & \dfrac{4+2\sqrt{15}}{2}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{20}-\sqrt{12}} \\
& = \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{20}-\sqrt{12}} \times \dfrac{\sqrt{20}+\sqrt{12}}{\sqrt{20}+\sqrt{12}} \\
& = \dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{20}+\sqrt{12}\right)}{\left(\sqrt{20}-\sqrt{12}\right)\left(\sqrt{20}+\sqrt{12}\right)} \\
& = \dfrac{\sqrt{100}+\sqrt{60}+\sqrt{60}+\sqrt{36}}{\sqrt{400}-\sqrt{240}+\sqrt{240}-\sqrt{144} } \\
& = \dfrac{10+2\sqrt{60}+6}{20-12} \\
& = \dfrac{16+2\sqrt{60}}{8} \\
& = \dfrac{16+2\sqrt{4 \cdot 15}}{8} \\
& = \dfrac{16+2 \cdot 2\sqrt{15}}{8} \\
& = \dfrac{16+4\sqrt{15}}{8} \\
& = \dfrac{4+\sqrt{15}}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ \dfrac{4+\sqrt{15}}{2}$

3. Soal Simulasi UNBK Matematika Tahun 2018 (*Soal Lengkap)

Bilangan yang senilai dengan $\dfrac{8}{3+\sqrt{5}}$ adalah...
$\begin{align}
(A)\ & 6-2\sqrt{5} \\
(B)\ & 6+2\sqrt{5} \\
(C)\ & 12-2\sqrt{5} \\
(D)\ & 12+2\sqrt{5}
\end{align}$
Alternatif Pembahasan:

Bilangan yang senilai dengan sebuah bilangan itu mampu kita cari dengan merubah bentuk tapi tidak merubah nilainya. Cara yang paling simpel ialah dengan mengkalikan bilangan itu dengan $1$, alasannya bilangan yang dikali dengan $1$ akhirnya ialah bilangan itu sendiri.
$ \begin{align}
\dfrac{8}{3+\sqrt{5}}
& =\dfrac{8}{3+\sqrt{5}} \times 1 \\
& =\dfrac{8}{3+\sqrt{5}} \times \dfrac{3-\sqrt{5}}{3-\sqrt{5}} \\
& =\dfrac{8(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} \\
& =\dfrac{8(3-\sqrt{5})}{(9-5)} \\
& =\dfrac{8(3-\sqrt{5})}{4} \\
& =\dfrac{2(3-\sqrt{5})}{1} \\
& =6-2\sqrt{5} \\
\end{align} $

$\therefore$ Pilihan yang sesuai ialah $(A)\ 6-2\sqrt{5}$

Jika ada masukan yang sifatnya membangun terkait Matematika SMP: Belajar Bentuk Akar (*Soal dan Pembahasan) atau request pembahasan soal, silahkan disampaikan😊CMIIW.

Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda 😊 Cara Pilar (Pintar Bernalar) Perkalian Dua Angka;
 Dengan bahasa sederhana disampaikan bahwa bentuk akar ialah akar dari bilangan rasional  Matematika SMP: Belajar Bentuk Akar (*Soal dan Pembahasan)

Belum ada Komentar untuk "Matematika Smp: Mencar Ilmu Bentuk Akar (*Soal Dan Pembahasan)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel