40 Soal Simulasi Unbk Matematika Sma Ipa Tahun 2020 (*Soal Dan Pembahasan Paket A)
Soal-soal UNBK nanti memang $100\%$ tidak sama dengan soal-soal simulasi, tetapi soal simulasi UNBK ini menjadi tolak ukur dasar dalam mempelajari soal-soal yang akan diujikan pada ujian nasional. Meskipun soal UNBK nanti tidak sama persis dengan soal simulasi berikut ini tetapi aturan-aturan dasar atau teorema-teorema dalam mengerjakan soal secara umum masih sama, terkhusus dalam pelajaran matematika. Sehingga soal-soal simulasi UNBK ini sangat baik dijadikan latihan dasar sebagai latihan dalam bernalar.
Kemampuan bernalar sanggup naik kalau dilatih dengan baik, kemapuan bernalar dikala ini sangat jadi perhatian, apalagi alasannya perkembangan soal UNBK yang akan memakai beberapa soal HOTS (High Order Thinking Skils). Salah satu cara untuk sanggup merampungkan soal HOTS ialah setidaknya kita sudah bisa memakai teorema-teorema dasar atau aturan dasar dalam mengerjakan soal sederhana atau soal LOTS (Low Order Thinking Skils), dimana untuk merampungkan hanya sekedar mensubstitusi variabel-variabel dari rumus-rumus yang ada.
Berikut mari kita coba soal simulasi UNBK Matematika IPA 2020 paket A. Jangan lupa untuk berlatih juga dari soal simulasi UNBK Matematika IPA 2020 paket C dan soal simulasi UNBK Matematika IPA 2020 paket B, mari berlatih dan berdiskusi๐๐
1. Persamaan kuadrat $x^{2}-2hx+(3h-2)=0$ memiliki dua akar tidak real. Batas-batas nilai $h$ yang memenuhi adalah...
$\begin{align}
(A)\ & h \lt -2\ \text{atau}\ h \gt -1 \\
(B)\ & h \lt -1\ \text{atau}\ h \gt 2 \\
(C)\ & h \lt 1\ \text{atau}\ h \gt 2 \\
(D)\ & 1 \lt h \lt 2 \\
(E)\ & -1 \lt h \lt 2
\end{align}$
Untuk persamaan kuadrat yang memiliki akar-akar tidak real maka diskriminan kurang dari nol.
$\begin{align}
x^{2}-2hx+(3h-2) & = 0 \\
D & \lt 0 \\
b^{2}-4ac & \lt 0 \\
(-2h)^{2}-4(1)(3h-2)& \lt 0 \\
4h^{2}-12h+8 & \lt 0 \\
h^{2}-3h+2 & \lt 0 \\
(h-1)(h-2) & \lt 0 \\
\left[h=1 \right] & \left[h=2 \right] \\
1 \lt h \lt 2
\end{align}$
(*Jika masih kesulitan merampungkan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat)
$\therefore$ Pilihan yang sesuai ialah $(D)\ 1 \lt h \lt 2$
2. Bentuk sederhana dari $\dfrac{2-2\ log^{2}\ ab}{1-log\ a^{5}b^{3}+2\ log\ a^{2}b}$ adalah...
$\begin{align}
(A)\ & log\ 10ab \\
(B)\ & 2log\ 10ab \\
(C)\ & log\ 20ab \\
(D)\ & log\ 10a^{2}b^{2} \\
(E)\ & 2log\ 10a^{2}b^{2} \\
\end{align}$
Untuk menyederhanakan bentuk aljabar pada soal di atas, kita perlu mengetahui sifat-sifat dasar logaritma.
$\begin{align}
& \dfrac{2-2\ log^{2}\ ab}{1-log\ a^{5}b^{3}+2\ log\ a^{2}b} \\
& = \dfrac{2\left (1- log^{2}\ ab \right )}{1-log\ a^{5}b^{3}+log\ a^{4}b^{2}} \\
& = \dfrac{2\left (1- log^{2}\ ab \right )}{1+log\ a^{4}b^{2}-log\ a^{5}b^{3}} \\
& = \dfrac{2\left (1+ log\ ab \right )\left (1- log\ ab \right )}{1+log\ \dfrac{a^{4}b^{2}}{a^{5}b^{3}}} \\
& = \dfrac{2\left (1+ log\ ab \right )\left (1- log\ ab \right )}{1+log\ a^{-1}b^{-1}} \\
& = \dfrac{2\left (1+ log\ ab \right )\left (1- log\ ab \right )}{1+log\ (ab)^{-1}} \\
& = \dfrac{2\left (1+ log\ ab \right )\left (1- log\ ab \right )}{1-log\ ab} \\
& = 2\left (1+ log\ ab \right ) \\
& = 2\left (log\ 10+ log\ ab \right ) \\
& = 2\ log\ 10ab
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(B)\ 2log\ 10ab$
3. Grafik fungsi kuadrat ibarat tampak pada gambar memotong sumbu $X$ di titik...
$\begin{align}
(A)\ & (-1,0)\ \text{dan}\ (5,0) \\
(B)\ & (-1,0)\ \text{dan}\ (6,0) \\
(C)\ & (2,0)\ \text{dan}\ (1,0) \\
(D)\ & (-4,0)\ \text{dan}\ (2,0) \\
(E)\ & (-5,0)\ \text{dan}\ (1,0)
\end{align}$
Untuk menentukan titik potong kurva dengan sumbu $X$, maka kita perlu ketahui persamaan kurva. Kurva pada gambar melalui titik puncak $(-2,9)$ dan sebuah titik sembarang $(0,5)$.
Jika diketahui Titik Puncak $(x_{p},y_{p})$ dan sebuah titik sembarang $(x,y)$ maka FK adalah:
$\begin{align}
y & = a\left (x -x_{p}\right)^{2}+y_{p} \\
5 & = a\left (0 -(-2)\right)^{2}+9 \\
5 & = a\left (0 + 2 \right)^{2}+9 \\
5-9 & = 4a \\
\dfrac{-4}{4} & = a \\
-1 & = a
\end{align}$
Persamaan kurva
$\begin{align}
y & = a\left (x -x_{p}\right)^{2}+y_{p} \\
y & = (-1) \left (x -(-2)\right)^{2}+9 \\
y & = (-1) \left (x + 2 \right)^{2}+9 \\
y & = (-1) \left (x^{2} + 4x+4 \right)+9 \\
y & = -x^{2} - 4x-4+9 \\
y & = -x^{2} - 4x+5
\end{align}$
Memotong sumbu $X$, maka $y=0$:
$\begin{align}
0 & = -x^{2} - 4x+5 \\
0 & = x^{2} + 4x-5 \\
0 & = (x+5)(x-1) \\
& x=-5\ \text{atau}\ x=1
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(E)\ (-5,0)\ \text{dan}\ (1,0)$
4. Suatu bangunan akan diselesaikan dalam $x$ hari dengan biaya pembangunan per hari sebesar $\left(4x+\dfrac{650}{x}-40 \right)$ juta rupiah. Biaya minimum pembangunan tersebut adalah...
$\begin{align}
(A)\ & Rp1.050.000.000,00 \\
(B)\ & Rp925.000.000,00 \\
(C)\ & Rp850.000.000,00 \\
(D)\ & Rp550.000.000,00 \\
(E)\ & Rp425.000.000,00 \\
\end{align}$
Biaya pembangunan per hari sebesar $\left(4x+\dfrac{650}{x}-40 \right)$ dan waktu pengerjaan ialah $x$ hari, sehingga biaya total adalah:
$\begin{align}
P(x) & = x \left(4x+\dfrac{650}{x}-40 \right) \\
P(x) & = 4x^{2}+650-40x
\end{align}$
Biaya minimum ketika:
$\begin{align}
P'(x) & = 0 \\
8x -40 & = 0 \\
8x & = 40 \\
x & = \dfrac{40}{8} \\
x & = 5
\end{align}$
Biaya minimum dikala $x=5$
$\begin{align}
P(x) & = 4x^{2}+650-40x \\
P(5) & = 4(5)^{2}+650-40(5) \\
& = 100+650-200 \\
& = 550
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(D)\ Rp550.000.000,00$
5. Fungsi $g(x)=\dfrac{2}{3}x^{3}+\dfrac{7}{2}x^{2}+6x+1$ turun pada interval...
$\begin{align}
(A)\ & -1 \lt x \lt \dfrac{1}{2} \\
(B)\ & -1 \lt x \lt -\dfrac{1}{2} \\
(C)\ & -1 \lt x \lt \dfrac{3}{2} \\
(D)\ & -2 \lt x \lt -\dfrac{3}{2} \\
(E)\ & -2 \lt x \lt \dfrac{3}{2}
\end{align}$
Syarat suatu fungsi akan turun ialah turunan pertama kurang dari nol,
turunan pertama $g(x)$ ialah $g'(x)=2x^{2}+7x+6$
$ \begin{align}
g'(x) & \lt 0 \\
2x^{2}+7x+6 & \lt 0 \\
(2x+3)(x+2) & \lt 0 \\
\left[x=-\dfrac{3}{2} \right] & \left[x=-2 \right] \\
-2 \lt x \lt -\dfrac{3}{2} &
\end{align}$
(*Jika masih kesulitan merampungkan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat)
$\therefore$ Pilihan yang sesuai ialah $(D)\ -2 \lt x \lt -\dfrac{3}{2}$
6. Persamaan bundar yang berpusat di $P(-2,3)$ dan melalui titik $(-1,3)$ adalah...
$\begin{align}
(A)\ & x^{2}+y^{2}+4x-6y+12=0 \\
(B)\ & x^{2}+y^{2}-4x-6y+12=0 \\
(C)\ & x^{2}+y^{2}+4x-6y-12=0 \\
(D)\ & x^{2}+y^{2}+4x+6y+12=0 \\
(E)\ & x^{2}+y^{2}+4x+6y-12=0 \\
\end{align}$
Untuk membentuk persamaan bundar setidaknya ada 2 hal dasar harus kita ketahui, yaitu titik pusat dan jari-jari lingkaran.
Pada soal disampaikan titik pusat bundar $P(-2,3)$ dan bundar melalui titik $(-1,3)$, artinya jari-jari bundar ialah jarak titik pusat ke titik yang dilalui lingkaran.
$ \begin{align}
r & = \sqrt{(y_{2}-y_{1})^{2}+x_{2}-x_{1})^{2}} \\
& =\sqrt{(3-3)^{2}+(-1-(-2))^{2}} \\
& =\sqrt{0+1} \\
& =1
\end{align} $
Persamaan bundar engan pusat $(a,b)$ dan jari-jari $r$ adalah:
$ \begin{align}
(x-a)^{2}+(y-b)^{2}& =r^{2} \\
(x-(-2))^{2}+(y-3)^{2}& =1^{2} \\
x^{2}+4x+4+y^{2}-6y+9 & =1 \\
x^{2}+y^{2}+4x-6y+12 & = 0
\end{align} $
(*Jika tertarik untuk berlatih lagi wacana Matematika Dasar: Lingkaran [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai ialah $(A)\ x^{2}+y^{2}+4x-6y+12=0$
7. Salah satu persamaan garis singgung bundar $x^{2}+y^{2}-2x+4y-15=0$ yang tegak lurus dengan garis $x+2y-6=0$ adalah...
$\begin{align}
(A)\ & x+2y+27=0 \\
(B)\ & x+2y-27=0 \\
(C)\ & 2x+y+14=0 \\
(D)\ & 2x-y-14=0 \\
(E)\ & 2x-y-6=0
\end{align}$
Persamaan garis singgung pada bundar yang dicari pada soal ialah PGS bundar kalau diketahui gradiennya alasannya garis singgung bundar tegak lurus dengan garis $x+2y-6=0$.
Garis singgung bundar tegak lurus dengan garis $x+2y-6=0$ maka gradien garis $x+2y-6=0$ ($m=-\frac{1}{2}$) dikali gradien garis singgung bundar ialah $-1$.
$m \times\ -\frac{1}{2}=-1$
$m =2$
Persamaan Garis Singgung Lingkaran $ x^{2} + y^{2} + Ax + By + C = 0$ kalau diketahui gradiennya ialah $y - b = m(x-a) \pm r \sqrt{1 + m^{2}}$.
Dari persamaan bundar $x^{2}+y^{2}-2x+4y-15=0$ kita peroleh pusat bundar yaitu $(1,-2)$ dan $r = \sqrt{a^{2} + b^{2} - C}=\sqrt{1 + 4 +15}=\sqrt{20}$.
$\begin{align}
y - b & = m(x-a) \pm r \sqrt{1 + m^{2}} \\
y +2 & = 2(x-1) \pm \sqrt{20} \sqrt{1 + (2)^2} \\
y +2 & = 2x-2 \pm \sqrt{20} \sqrt{5} \\
y & = 2x-4 \pm \sqrt{100} \\
y & = 2x-4 \pm 10 \\
\text{(PGS 1) }:y & = 2x-4+10 \\
2x-y+6 & = 0 \\
\text{(PGS 2) }:y & = 2x-4-10 \\
2x-y-14 & = 0
\end{align} $
$\therefore$ Pilihan yang sesuai ialah $(D)\ 2x-y-14=0$
8. Persamaan garis singgung kurva $y=x^{2}+x+3$ yang tegak lurus dengan garis $x-y=5$ adalah...
$\begin{align}
(A)\ & x-y-4=0 \\
(B)\ & x-y+4=0 \\
(C)\ & x+y-2=0 \\
(D)\ & x+y+2=0 \\
(E)\ & -x+y-2=0 \\
\end{align}$
Garis singgung kurva tegak lurus dengan garis $x-y=5$ maka gradien garis $x-y=5$ ($m=1$) dikali gradien garis singgung kurva ialah $-1$.
$m \times\ 1=-1$
$m =-1$
Untuk menerima persamaan garis singgung kurva kita perlu sebuah titik singgung pada kurva dan gradien garis.
Gradien persamaan garis singgung pada kurva $y=x^{2}+x+3$ gradiennya ialah $m=-1$, sehingga:
$\begin{align}
y & = x^{2}+x+3 \\
m=y' & = 2x+1 \\
-1 & = 2x+1 \\
-2 & = 2x \\
x & = -1 \\
y & = x^{2}+x+3 \\
y & = (-1)^{2}+(-1)+3 \\
y & = 3
\end{align} $
Persamaan garis singgung kurva melalui titik $(-1,3)$ dengan gradien $m=-1$
$\begin{align}
y-y_{1} & = m (x-x_{1}) \\
y-3 & = -1 (x-(-1)) \\
y-3 & = -x-1 \\
y & = -x+2
\end{align} $
(*Jika tertarik untuk berlatih lagi wacana Matematika Dasar: Persamaan Garis [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai ialah $(C)\ x+y-2=0$
9. Diketahui fungsi $f(x)=\dfrac{x^{2}-1}{2x}$ untuk $x \neq 0$. Turunan pertama fungsi $f(x)$ ialah $f'(x)=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{2}-\dfrac{1}{2x^{2}} \\
(B)\ & \dfrac{1}{2}+\dfrac{1}{2x^{2}} \\
(C)\ & \dfrac{1}{2}-\dfrac{3}{4x^{2}} \\
(D)\ & -\dfrac{3}{2}+\dfrac{3}{4x^{2}} \\
(E)\ & \dfrac{3}{2}+\dfrac{3}{4x^{2}}
\end{align}$
Turunan pertama dari $f(x)$ ialah $f'(x)$ yaitu:
$ \begin{align}
f(x) & = \dfrac{u(x)}{v(x)} \\
f'(x) & = \dfrac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^{2}(x)} \\
& = \dfrac{(2x) \cdot (2x) - \left( x^{2}-1 \right) \cdot 2}{(2x)^{2}} \\
& = \dfrac{4x^{2} - 2x^{2}+2}{4x^{2}} \\
& = \dfrac{2x^{2} +2}{4x^{2}} \\
& = \dfrac{2x^{2}}{4x^{2}} + \dfrac{2}{4x^{2}} \\
& = \dfrac{1}{2} + \dfrac{1}{2x^{2}} \\
\end{align} $
(*Jika tertarik untuk berlatih lagi wacana Matematika Dasar: Turunan [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai ialah $(B)\ \dfrac{1}{2}+\dfrac{1}{2x^{2}}$
10. Diketahui $f(x)=3x+4$ dan $(gof)(x)=6x+6$. Nilai dari $g^{-1}(0)=\cdots$
$\begin{align}
(A)\ & 2 \\
(B)\ & 1 \\
(C)\ & \dfrac{1}{2} \\
(D)\ & -1 \\
(E)\ & -2
\end{align}$
Berdasarkan informmasi pada soal, diketahui $(gof)(x)=6x+6$ maka
$ \begin{align}
g \left (f(x) \right ) & = 6x+6 \\
g \left (3x+4 \right ) & = 2(3x+4)-2 \\
g \left (a \right ) & = 2(a)-2
\end{align} $
Invers fungsi $g(a)$ ialah $g^{-1}(a)$, salah satu cara menentukan $g^{-1}(a)$ yaitu:
$ \begin{align}
y & = 2(a)-2 \\
y+2 & = 2(a) \\
\dfrac{y+2}{2} & = a \\
g^{-1}(a) & = \dfrac{a+2}{2} \\
g^{-1}(0) & = \dfrac{0+2}{2}=1
\end{align} $
(*Jika tertarik untuk berlatih lagi wacana Matematika Dasar: FKFI [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai ialah $(B)\ 1$
11. Usia Citra $8$ tahun lebih wangi tanah dari usia Salsa. Sedangkan $4$ tahun yang kemudian usia Salsa sama dengan dua pertiga dari usia Citra. Usia Salsa sekarang...
$\begin{align}
(A)\ & 28\ \text{tahun} \\
(B)\ & 25\ \text{tahun} \\
(C)\ & 20\ \text{tahun} \\
(D)\ & 17\ \text{tahun} \\
(E)\ & 14\ \text{tahun}
\end{align}$
Kita misalkan umur Citra dan Salsa dikala ini ialah $\text{Citra}=C$ dan $\text{Salsa}=S$.
Untuk empat tahun yang kemudian umur mereka ialah $(C-4)$ dan $(S-4)$, berlaku:
$ \begin{align}
\dfrac{2}{3} (C-4) & = (S-4) \\
2C-8 & = 3S-12 \\
2C-3S & = -4 \text{(Pers.1)}
\end{align} $
Untuk dikala ini umur mereka ialah $(C)$ dan $(S)$, berlaku:
$ \begin{align}
C & = S + 8 \\
C-S & = 8\ \text{(Pers.2)}
\end{align} $
Dari (Pers.1) dan (Pers.2) kita peroleh;
$\begin{array}{c|c|cc}
2C - 3S = -4 & \times 1 & 2C - 3S = -4 & \\
C- S = 8 & \times 2 & 2C-2S = 16 & - \\
\hline
& & -S = - 20 \\
& & S =20
\end{array} $
$\therefore$ Pilihan yang sesuai ialah $(C)\ 20\ \text{tahun}$
12. Harga $4$ buku dan $4$ penggaris ialah $Rp40.000,00$, sedangkan harga $4$ buku dikurangi harga $4$ penggaris ialah $Rp20.000,00$. Jika harga buku ialah $a$ rupiah dan harga penggaris $b$ rupiah, persamaan matriks yang sesuai untuk merampungkan duduk perkara tersebut adalah...
$\begin{align}
(A)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{32}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{32}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{16}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=-\dfrac{1}{6}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=-\dfrac{1}{32}\begin{pmatrix}
4 & -4\\
-4 & 4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix}
\end{align}$
Dengan memakai pemisalan $\text{harga buku}=a$ dan $\text{harga penggaris}=b$,
Harga $4$ buku dan $4$ penggaris ialah $Rp40.000,00$
$4a+4b=40.000$
Harga $4$ buku dikurangi $4$ penggaris ialah $Rp20.000,00$
$4a-4b=40.000$
$\begin{array}{c|c|cc}
4a+4b = 40.000 & \\
4a-4b = 20.000 & \\
\hline
\end{array} $
Sistem persamaan diatas kalau tuliskan dalam bentuk matriks menjadi:
$\begin{align}
\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
a \\
b
\end{pmatrix} &= \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}^{-1}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \dfrac{1}{-16-16}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= -\dfrac{1}{32}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \dfrac{1}{32}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix}
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(B)\ \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{32}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix}$
13. Diketahui matriks $A=\begin{pmatrix}
2 & 1\\
1 & 2
\end{pmatrix}$ dan $B=\begin{pmatrix}
3 & -1\\
2 & 1
\end{pmatrix}$. Invers dari matriks $BA$ ialah $(BA)^{-1}=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
\dfrac{4}{15} & \dfrac{1}{15} \\
\dfrac{1}{3} & \dfrac{-1}{3}
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
\dfrac{4}{15} & -\dfrac{1}{15} \\
-\dfrac{1}{3} & \dfrac{1}{3}
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
\dfrac{-4}{15} & \dfrac{1}{15} \\
\dfrac{1}{3} & \dfrac{-1}{3}
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
\dfrac{-4}{15} & \dfrac{-1}{15} \\
\dfrac{-1}{3} & \dfrac{1}{3}
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
\dfrac{-4}{15} & \dfrac{-1}{15} \\
\dfrac{1}{3} & \dfrac{-1}{3}
\end{pmatrix}
\end{align}$
$\begin{align}
BA &= \begin{pmatrix}
3 & -1\\
2 & 1
\end{pmatrix} \begin{pmatrix}
2 & 1\\
1 & 2
\end{pmatrix} \\
&= \begin{pmatrix}
6-1 & 3-2\\
4+1 & 2+2
\end{pmatrix} \\
&= \begin{pmatrix}
5 & 1\\
5 & 4
\end{pmatrix}
\end{align} $
$\begin{align}
BA &= \begin{pmatrix}
5 & 1\\
5 & 4
\end{pmatrix} \\
BA^{-1} &= \dfrac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix} \\
&= \dfrac{1}{20-5}\begin{pmatrix}
4 & -1\\
-5 & 5
\end{pmatrix} \\
&= \begin{pmatrix}
\dfrac{4}{15} & \dfrac{-1}{15} \\
\dfrac{-5}{15} & \dfrac{5}{15}
\end{pmatrix}
\end{align} $
(*Jika tertarik untuk berlatih lagi wacana Matematika Dasar: Matriks [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai ialah $(B)\ \begin{pmatrix}
\dfrac{4}{15} & -\dfrac{1}{15} \\
-\dfrac{1}{3} & \dfrac{1}{3}
\end{pmatrix}$
14. Sebuah pabrik memproduksi ban sepeda melalui dua tahap. Tahap pertama memakai mesin $A$ untuk mengolah karet mentah menjadi keret siap cetak. Tahap kedua memakai mesin $B$ untuk mengolah karet siap cetak menjadi ban. Misalkan $x$ menyatakan jumlah karet mentah dalam satuan $kg$ dan $y$ menyatakan jumlah materi siap cetak dalam satuan $m^{2}$. Pada tahap pertama, banyak materi siap cetak dihasilkan mengikuti fungsi $y=f(x)=5x-7$. Pada tahap kedua, jumlah ban yang dihasilkan mengikuti fungsi $g(y)=7y+3$. Jika satu buah ban sepeda seharga $Rp50.000$ dan terdapat $100\ kg$ karet mentah, pendapatan pabrik tersebut adalah...
$\begin{align}
(A)\ & Rp169.500.000,00 \\
(B)\ & Rp170.550.000,00 \\
(C)\ & Rp170.700.000,00 \\
(D)\ & Rp172.550.000,00 \\
(E)\ & Rp172.700.000,00
\end{align}$
Banyak materi mengikuti fungsi $y=f(x)=5x-7$, untuk $x=100$ maka $y=5(100)-7=493$
Jumlah ban yang dihasilkan mengikuti $g(y)=7y+3$, untuk $y=493$ maka $g(y)=7(493)+3=3.454$
Jumlah materi yang dihasilkan ialah $3.454$ buah dengan harga satu buah $Rp50.000$ maka pendapatan pabrik ialah $3.454 \times 50.000=172.700.000$
$\therefore$ Pilihan yang sesuai ialah $(E)\ Rp172.700.000,00$
15. Diketahui segitiga siku-siku $KLM$ dengan $sin\ L=\dfrac{7}{25}$ ($M$ dan $L$ sudut lancip). Nilai dari $(cosec\ L+tan\ M)(1-sin\ M)$ adalah...
$\begin{align}
(A)\ & \dfrac{24}{25} \\
(B)\ & \dfrac{18}{25} \\
(C)\ & \dfrac{7}{25} \\
(D)\ & \dfrac{6}{25} \\
(E)\ & \dfrac{4}{25} \\
\end{align}$
Sebagai citra segitiga siku-siku $KLM$ sanggup digambarkan sebagai berikut:
Dengan menggunkan teorema phytagoras sanggup kita hitung, $KL$ yaitu:
$\begin{align}
KL^{2} & = LM^{2}- KM^{2} \\
& = 25^{2}- 7^{2} \\
& = 625 - 49 \\
& = 576 \\
KL & = \sqrt{576}=24
\end{align}$
$\begin{align}
& \left( cosec\ L+tan\ M \right) \left( 1-sin\ M \right) \\
& = \left( \dfrac{1}{sin\ L}+tan\ M \right) \left( 1-sin\ M \right) \\
& = \left( \dfrac{25}{7}+ \dfrac{24}{7} \right) \left( 1- \dfrac{24}{25} \right) \\
& = \left( \dfrac{49}{7} \right) \left( \dfrac{1}{25} \right) \\
& = \left( 7 \right) \left( \dfrac{1}{25} \right) \\
& = \dfrac{7}{25}
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(C)\ \dfrac{7}{25}$
16. Seorang anak diminta untuk mengukur tinggi tiang listrik yang ada di depan sekolahnya dengan memakai klinometer. Pada posisi berdiri pertama dengan melihat ujung atas tiang listrik, terlihat klinometer mengatakan sudut $30^{\circ}$. Kemudian ia bergerak mendekati tiang listrik sejauh $18$ meter dan terlihat klinometer menunjuk sudut $45^{\circ}$. Tinggi tiang listrik tersebut adalah...
$\begin{align}
(A)\ & 18\sqrt{3}\ m \\
(B)\ & (18\sqrt{3}-18)\ m \\
(C)\ & (12\sqrt{3}+12)\ m \\
(D)\ & (9\sqrt{3}+9)\ m \\
(E)\ & (9\sqrt{2}+9)\ m
\end{align}$
Untuk mempermudah istilah pada gambar, titik-titik sudut kita beri nama sebagai berikut;
$\begin{align}
tan\ 45 & = \dfrac{CD}{BC} \\
1 & = \dfrac{CD}{BC} \\
BC & = CD \\
tan\ 30 & = \dfrac{CD}{AC} \\
\dfrac{1}{3}\sqrt{3} & = \dfrac{CD}{AC} \\
\dfrac{1}{3}AC \sqrt{3} & = CD
\end{align}$
$\begin{align}
BC & = \dfrac{1}{3}AC \sqrt{3} \\
BC & = \dfrac{1}{3} (BC+18) \sqrt{3} \\
BC & = \dfrac{1}{3}BC\sqrt{3}+6\sqrt{3} \\
BC - \dfrac{1}{3}BC\sqrt{3} & = 6\sqrt{3} \\
3BC - BC\sqrt{3} & = 18\sqrt{3} \\
BC \left(3 - \sqrt{3} \right) & = 18\sqrt{3} \\
BC & = \dfrac{18\sqrt{3}}{3 - \sqrt{3}} \times \dfrac{3 + \sqrt{3}}{3 + \sqrt{3}} \\
& = \dfrac{54\sqrt{3}+54}{9 -3} \\
& = \dfrac{54\sqrt{3}+54}{6} \\
& = 9\sqrt{3}+9 \\
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(D)\ (9\sqrt{3}+9)\ m $
17. Diketahui kubus $PQRS.TUVW$ dengan panjang rusuk $4\ cm$. Sudut anatar $UW$ dan $QV$ adalah...
$\begin{align}
(A)\ & 150^{\circ} \\
(B)\ & 135^{\circ} \\
(C)\ & 120^{\circ} \\
(D)\ & 90^{\circ} \\
(E)\ & 60^{\circ} \\
\end{align}$
Untuk mempermudah melihat sudut kedua garis pada kubus, kita perhatikan gambar berikut ini;
Kita pilih garis $QV$ hingga ke $PW$, sehingga sudut $PW$ dan $WU$ ialah sudut yang akan kita cari. Dengan memakai proteksi segitiga $PWU$, dimana segitiga $PWU$ ialah segitiga sama sisi $(PW=WU=UP=4\sqrt{2})$ sehingga besar sudut $PW$ dan $WU$ ialah $60^{\circ}$
$\therefore$ Pilihan yang sesuai ialah $(E)\ 60^{\circ}$
18. Balok $ABCD.EFGH$ ibarat tampak pada gambar memiliki ukuran $AB=10\ cm$, $BC=4\ cm$, $CG=8\ cm$, $AS=2\ cm$ dan $GM=3\ cm$. Seekor semut berjalan pada permukaan balok dari $S$ menuju kuliner yang ada di $M$. Jarak terpendek dari asal semut $(S)$ ke kuliner $(M)$ adalah...
$\begin{align}
(A)\ & 12\ cm \\
(B)\ & (4+\sqrt{41})\ cm \\
(C)\ & (4+\sqrt{89})\ cm \\
(D)\ & (8\sqrt{2}+5)\ cm \\
(E)\ & \sqrt{105}\ cm
\end{align}$
Lintasan semut ialah pada permukaan balok, sehingga tidak mungkin langsung berjalan dari $S$ ke $M$.
Jarak terpendek sanggup pada balok sanggup kita hitung dengan memakai teorema phytagoras, pada balok kita munculkan persegi panjang $MNOP$. Kita perhatikan pada gambar berikut:
Pada segitiga $SOP$ berlaku
$\begin{align}
SP^{2} & = OP^{2}+OS^{2} \\
& = 5^{2}+8^{2} \\
& = 25 +64 \\
& = 89 \\
SP & = \sqrt{89}
\end{align}$
Jarak terpendek dari $S$ ke $M$ ialah $SP+PM=\sqrt{89}+4$
$\therefore$ Pilihan yang sesuai ialah $(C)\ (4+\sqrt{89})\ cm$
19. Segitiga $PQR$ dengan titik sudut $P(1,1)$, $Q(3,1)$, dan $R(2,2)$ dirotasi sebesar $180^{\circ}$ pada pusat rotasi $(3,4)$. Bayangan ketiga titik tersebut berturut-turut adalah...
$\begin{align}
(A)\ & P'(5,7),\ Q'(3,7),\ R'(4,6) \\
(B)\ & P'(5,5),\ Q'(3,4),\ R'(4,6) \\
(C)\ & P'(4,7),\ Q'(3,7),\ R'(4,4) \\
(D)\ & P'(4,5),\ Q'(3,4),\ R'(4,4) \\
(E)\ & P'(4,7),\ Q'(3,7),\ R'(4,4)
\end{align}$
Bayangan titik $(x,y)$yang di rotasi dirotasi sejauh $\theta$ dengan pusat $(a,b)$ kita tentukan dengan matriks;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ \theta & -sin\ \theta\\
sin\ \theta & cos\ \theta
\end{pmatrix}\begin{pmatrix}
x-a\\
y-b
\end{pmatrix}+\begin{pmatrix}
a\\
b
\end{pmatrix}$
Bayangan titik $(x,y)$ yang di rotasi dirotasi sejauh $180^{\circ}$ dengan pusat $(3,4)$ adalah;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ 180 & -sin\ 180\\
sin\ 180 & cos\ 180
\end{pmatrix}\begin{pmatrix}
x-3\\
y-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x-3\\
y-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
Bayangan titik $P(1,1)$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
1-3\\
1-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
-2\\
-3
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
2+3\\
3+4
\end{pmatrix}=\begin{pmatrix}
5\\
7
\end{pmatrix}$
Dengan cara yang sama bayangan titik $Q(3,1)$ ialah $Q'(3,7)$ dan bayangan titik $R(2,2)$ ialah $R'(4,6)$
$\therefore$ Pilihan yang sesuai ialah $(A)\ P'(5,7),\ Q'(3,7),\ R'(4,6)$
20. Nilai dari $ \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- 3x-1 \right )$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{6} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 1 \\
(D)\ & \dfrac{13}{6} \\
(E)\ & 3
\end{align}$
$ \begin{align}
& \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- 3x-1\right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- \left (3x+1 \right ) \right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}-\sqrt{ \left (3x+1 \right )^{2}} \right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}-\sqrt{9x^2+6x+1} \right ) \\
& = \frac{b-q}{2\sqrt{a}} \\
& = \frac{7-6}{2\sqrt{9}} \\
& = \frac{1}{6}
\end{align} $
(*Jika tertarik untuk berlatih lagi wacana Matematika Dasar: Limit Takhingga [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai ialah $(A)\ \dfrac{1}{6}$
21. Perhatikan gambar berikut!
Luas daerah persegi yang diarsir adalah...
$\begin{align}
(A)\ & 32\ cm^{2} \\
(B)\ & 16\ cm^{2} \\
(C)\ & 12\ cm^{2} \\
(D)\ & 8 cm^{2} \\
(E)\ & 4\ cm^{2}
\end{align}$
Jika kita perhatikan luas persegi pertama (terluar) ialah $8 \times 8 =64\ cm^{2}$
Persegi yang kedua $4\sqrt{2} \times 4\sqrt{2} =32\ cm^{2}$
Persegi yang ketiga $4 \times 4 =16\ cm^{2}$
Persegi yang keempat $2\sqrt{2} \times 2\sqrt{2} =8\ cm^{2}$
Persegi yang kelima $2 \times 2 =4\ cm^{2}$
atau bisa pakai deret geometri suku ke-5 dengan $a=64$ dan $r=\dfrac{32}{64}=\dfrac{1}{2}$ adalah:
$U_{n}=ar^{n-1}$
$U_{5}=(64)(\dfrac{1}{2})^{5-1}$
$U_{5}=(64)(\dfrac{1}{2})^{4}$
$U_{5}=(64)\left(\dfrac{1}{16} \right)$
$U_{5}=4$
$\therefore$ Pilihan yang sesuai ialah $(E)\ 4\ cm^{2}$
22. Suku ke-8 suatu deret aritmatika ialah $15$ dan jumlah suku ke-2 dengan suku ke-16 ialah $26$. Jumlah $40$ suku pertama deret adalah...
$\begin{align}
(A)\ & 800 \\
(B)\ & 400 \\
(C)\ & -200 \\
(D)\ & -400 \\
(E)\ & -800
\end{align}$
Catatan deret aritmatika untuk merampungkan soal diatas ialah suku ke-$n$ yaitu $U_{n}=a=(n-1)b$ dan jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)$ atau $S_{n}=\dfrac{n}{2} \left(a+U_{n} \right)$
Suku ke-8 deret aritmatika ialah 15, berlaku:
$\begin{align}
U_{8} & = 15 \\
a+7b & = 15
\end{align}$
Jumlah suku ke-2 dengan suku ke-16 ialah $26$, berlaku:
$\begin{align}
U_{2} + U_{16} & = 26 \\
a+b + a+15b & = 26 \\
2a+16b & = 26 \\
a+8b & = 13
\end{align}$
$\begin{array}{c|c|cc}
a+8b = 13 & \\
a+7b=15 & - \\
\hline
b = - 2 & \\
a = 15 + 14 = 19 & \\
\end{array} $
Jumlah $40$ suku pertama deret adalah:
$\begin{align}
S_{n} & = \dfrac{n}{2} \left(2a+(n-1)b \right) \\
S_{40} & = \dfrac{40}{2} \left(2(19)+(40-1)(-2) \right) \\
& = 20 \left(38-78 \right) \\
& = -800
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(E)\ -800$
23. Hasil dari $\int 4x\ \left ( 2x^{2}-1 \right )^{3}\ dx $ adalah...
$\begin{align}
(A)\ & \dfrac{1}{4} \left ( 2x^{2}-1 \right )^{4} + C \\
(B)\ & 4 \left ( 2x^{2}-1 \right )^{4} + C \\
(C)\ & \dfrac{1}{2} \left ( 2x^{2}-1 \right )^{4} + C \\
(D)\ & \dfrac{1}{8} \left ( 2x^{2}-1 \right )^{4} + C \\
(E)\ & \dfrac{1}{8} \left ( 2x^{2}+1 \right )^{4} + C
\end{align}$
Hasil $\int 4x\ \left ( 2x^{2}-1 \right )^{4}\ dx $ kita coba kerjakan dengan pemisalan;
Misal:
$\begin{align}
u & = 2x^{2}-1 \\
\dfrac{du}{dx} & = 4x \\
du & = 4x\ dx
\end{align}$
Soal diatas, kini bisa kita rubah menjadi;
Misal:
$\begin{align}
& \int 4x\ \left ( 2x^{2}-1 \right )^{3}\ dx \\
& = \int \left ( u \right )^{3}\ 4x\ dx \\
& = \int \left ( u \right )^{3}\ du \\
& = \dfrac{1}{4} \left ( u \right )^{3+1} + C \\
& = \dfrac{1}{4} \left ( 2x^{2}-1 \right )^{4} +C
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(A)\ \dfrac{1}{4} \left ( 2x^{2}-1 \right )^{4} + C$
24. Diketahui $\int_{-2}^{3} \left ( 3x^{2}-12x+m \right ) dx=30$. Nilai $m$ yang memenuhi adalah...
$\begin{align}
(A)\ & 3 \\
(B)\ & 5 \\
(C)\ & 6 \\
(D)\ & 8 \\
(E)\ & 9
\end{align}$
$ \begin{align}
\int_{-2}^{3} \left ( 3x^{2}-12x+m \right ) dx & = 30 \\
\left [x^{3}-6x^{2}+mx \right ]_{-2}^{3} & = 30 \\
\left [(3)^{3}-6(3)^{2}+m(3) \right ]-\left [(-2)^{3}-6(-2)^{2}+m(-2) \right ] & = 30 \\
\left [27-54+3m \right ]-\left [-8-24-2m \right ] & = 30 \\
35-30+5m & = 30 \\
5 +5m & = 30 \\
m & = \frac{25}{5}=5
\end{align} $
$\therefore$ Pilihan yang sesuai ialah $(B)\ 5$
25. Perhatikan daerah penyelesaian berikut!
Sistem pertidaksamaan linear yang memenuhi daerah penyelesaian yang diarsir adalah...
$\begin{align}
(A)\ & 2x+y \leq 4;\ x+3y \leq 6;\ x \geq 0;\ y \geq 0 \\
(B)\ & 2x+y \leq 4;\ x+3y \geq 6;\ x \geq 0;\ y \geq 0 \\
(C)\ & 2x+y \geq 4;\ x+3y \leq 6;\ x \geq 0;\ y \geq 0 \\
(D)\ & 2x+y \leq 4;\ 3x+y \leq 6;\ x \geq 0;\ y \geq 0 \\
(E)\ & 2x+y \geq 4;\ 3x+y \leq 6;\ x \geq 0;\ y \geq 0 \\
\end{align}$
Untuk menentukan sistem pertidaksamaan dari daerah yang diarsir pada gambar, pertama kita harus menerima sistem persamaannya atau batas-batas daerah yang diarsir.
Pada gambar diatas ada 4 garis yang membatasi daerah yang diarsir, coba kita berikan ilustrasinya;
- $I:\ 4x+2y=8\ \rightarrow\ 2x+y=4$
- $II:\ 2x+6y=12\ \rightarrow\ x+3y=6$
- $III:\ y=0$
- $IV:\ x=0$
Untuk menentukan pertidaksamaannya, kita tentukan dengan titik uji. Kita pilih sebuah titik pada daerah yang merupakan himpunan penyelesaian atau daerah yang diarsir pada gambar.
- Titik $(0,0)$ ke $2x+y=4$ diperoleh $ 0 \leq 4 $, maka pertidaksamaannya ialah $ 2x+y \leq 4 $.
- Titik $(0,0)$ ke $x+3y=6$ diperoleh $ 0 \leq 6 $, maka pertidaksamaannya ialah $ x+3y\leq 6 $.
- Untuk batas $III$ dan $IV$ daerah yang diarsir ialah daerah $x \geq 0;\ y \geq 0$
Trik untuk melihat atau menentukan daerah Himpunan Penyelesaian sanggup dengan melihat koefisien $y$.
- Jika koefisien $y$ positif dan tanda $\leq$ maka daerah HP berada di bawah garis.
- Jika koefisien $y$ positif dan tanda $\geq$ maka daerah HP berada di atas garis.
$\therefore$ Pilihan yang sesuai ialah $(A)\ 2x+y \leq 4;\ x+3y \leq 6;\ x \geq 0;\ y \geq 0$
26. Seoarang petani ikan ingin membuat 12 kolam ikan untuk ikan lele dan ikan gurami. Kolam ikan lele memerlukan lahan $20\ m^{2}$ dan kolam ikan gurmai memerlukan lahan $40\ m^{2}$, sedangkan lahan yang tersedia hanya $400\ m^{2}$. Setiap kolam ikan gurami menghasilakn keuntungan $Rp10.000.000,00$ dan setiap kolam ikan lele menghasilakn keuntungan $Rp6.000.000,00$. Keuntungan maksimum yang bisa diperoleh petani tersebut adalah...
$\begin{align}
(A)\ & Rp72.000.000,00 \\
(B)\ & Rp75.000.000,00 \\
(C)\ & Rp88.000.000,00 \\
(D)\ & Rp104.000.000,00 \\
(E)\ & Rp115.000.000,00
\end{align}$
Informasi yang ada pada soal coba kita rangkum dalam bentuk tabel, dengan memisalkan banyak kolam $\text{lele}\ =x$ dan $\text{gurami}\ =y$ maka kurang lebih menjadi ibarat berikut ini;
Jenis Kolam | lahan | banyak |
Lele ($x$) | $20$ | $x$ |
Gurami ($y$) | $40$ | $y$ |
Tersedia | $400$ | $12$ |
Dari tabel diatas, sanggup kita bentuk sistem pertidaksamaannya;
$\begin{align}
20x+40y & \leq 400 \\
\left( x+2y \leq 20 \right) & \\
x+y & \leq 12 \\
x & \geq 0 \\
y & \geq 0
\end{align} $
Trik untuk melihat atau menentukan daerah Himpunan Penyelesaian sanggup dengan melihat koefisien $y$.Jika kita gambarkan citra daerah Himpunan Penyelesaian sistem pertidaksamaan diatas adalah;
- Jika koefisien $y$ positif dan tanda $\leq$ maka daerah HP berada di bawah garis.
- Jika koefisien $y$ positif dan tanda $\geq$ maka daerah HP berada di atas garis.
Untuk menerima penjualan maksimum, salah satu caranya sanggup dengan titik uji pada titik sudut daerah HP kepada fungsi tujuan $Z=6x+10y$ (dalam jutaan).
- titik $(0,0)$ maka $Z=6 (0)+10 (0)=0$
- titik $(12,0)$ maka $Z=6 (12)+10 (0)=72 $
- titik $(4,8)$ maka $Z=6 (4)+10 (8)=104 $ titik $(4,8)$ kita peroleh dengan mengeliminasi atau substitusi garis I dan garis II
- titik $(0,10)$ maka $Z=6 (0)+10 (10)=100 $
27. Raras akan membuat instruksi dengan menyusun dari $5$ abjad dan diikuti oleh $2$ angka berbeda. Jika abjad yang disusun berasal dari abjad penyusun namanya, banyak instruksi yang sanggup dibuat adalah...
$\begin{align}
(A)\ & 1.800 \\
(B)\ & 2.160 \\
(C)\ & 2.700 \\
(D)\ & 4.320 \\
(E)\ & 5.400
\end{align}$
Huruf penyusun nama raras ialah $5$ abjad dimana dua abjad ialah sama, sehingga untuk menyusunnya kita pakai permutasi dengan ada unsur yang sama. Lalu diikuti oleh $2$ angka yang berasal dari $10$ angka yang ada.
Banyak susunan ode yang mungkin adalah:
$\begin{align}
& P_{2! 2!}^{5!} \times 10 \times 9 \\
& = \dfrac{5 \times 4 \times 3 \times 2 \times 1 }{ 2 \times 2} \times 90 \\
& = 30 \times 90 \\
& = 2.700
\end{align} $
$\therefore$ Pilihan yang sesuai ialah $(C)\ 2.700$
28. Sebuah kotak berisi $5$ bola berwwarna merah dan $3$ bola berwarna putih. Dari dalam kotak diambil $2$ bola secara acak. Banyak cara pengambilan semoga yang terambil satu bola merah dan satu bola putih adalah...
$\begin{align}
(A)\ & 8 \\
(B)\ & 15 \\
(C)\ & 25 \\
(D)\ & 27 \\
(E)\ & 30
\end{align}$
Untuk mengambil $2$ bola dimana satu bola merah dan satu bola putih, berarti akan dipilih satu bola merah dari $5$ bola dan satu bola putih dari $3$ bola:
Banyak cara pengambilan adalah:
$\begin{align}
& _{5}C_{1} \times _{3}C_{1} \\
& = 5 \times 3 \\
& = 15
\end{align} $
$\therefore$ Pilihan yang sesuai ialah $(B)\ 15$
29. Dari angka-angka $0,1,3,4,7,\ \text{dan}\ 9$ akan disusun bilangan yang terdiri atas tiga angka berlainan dan kurang dari $500$. Banyak bilangan yang sanggup dibuat adalah...
$\begin{align}
(A)\ & 120 \\
(B)\ & 80 \\
(C)\ & 60 \\
(D)\ & 40 \\
(E)\ & 15
\end{align}$
Bilangan yang akan disusun dari $0,1,3,4,7,\ \text{dan}\ 9$ ialah kurang dari $500$, maka angka ratusan yang mungkin (1,3,4), puluhan (0,1,3,4,7,9) dan satuan (0,1,3,4,7,9).
Banyak bilangan ialah $3 \times 5 \times 4 =60$
$\therefore$ Pilihan yang sesuai ialah $(C)\ 60$
30. Kotak I berisi $3$ bola merah dan $3$ bola putih, sedangkan kotak II berisi $5$ bola merah dan $3$ bola putih. Dari kedua kotak tersebut secara acak masing-masing diambil sebuah bola. Peluang terambil bola merah dari kotak I dan bola putih dari kotak II adalah...
$\begin{align}
(A)\ & \dfrac{5}{40} \\
(B)\ & \dfrac{3}{16} \\
(C)\ & \dfrac{3}{20} \\
(D)\ & \dfrac{1}{5} \\
(E)\ & \dfrac{1}{4}
\end{align}$
Peluang sebuah tragedi $E$ ialah $P(E)=\dfrac{n(E)}{n(S)}$
Pada kotak I, merah=3 dan putih=3
Peluang terambil bola merah dari kotak I
$\begin{align}
P(M_{I}) & = \dfrac{n(E_{I})}{n(S_{I})} \\
& = \dfrac{3}{6} = \dfrac{1}{2}
\end{align}$
Pada kotak II, merah=5 dan putih=3
Peluang terambil bola putih dari kotak II
$\begin{align}
P(P_{II}) & = \dfrac{n(E_{II})}{n(S_{II})} \\
& = \dfrac{3}{8}
\end{align}$
Peluang terambil bola merah dari kotak I dan bola putih dari kotak II
$\begin{align}
P(E) & =P(M_{I}) \times P(P_{II}) \\
& =\dfrac{n(E_{I})}{n(S_{I})} \times \dfrac{n(E_{II})}{n(E_{II})} \\
& =\dfrac{3)}{6} \times \dfrac{3}{8} \\
& =\dfrac{3)}{16}
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(B)\ \dfrac{3}{16}$
31. Diberikan Histogram sebagai berikut:
Gambar ogive dari histogram tersebut adalah...
Dari histogram yang disajikan pada gambar, sanggup kita buat ogive positif dan ogive negatif. Untuk membuat ogive kita membutuhkan distribusi frekuensi relatif. Kita sajikan dalam bentuk tabel sebagai berikut:
Tabel distribusi Frekuensi | |||
---|---|---|---|
Kelas | Frekuensi | $f_{k} \leq$ | $f_{k} \geq$ |
$10-19$ | $15$ | $\leq 9,5: 0$ | $\geq 9,5: 120$ |
$20-29$ | $20$ | $\leq 19,5: 15$ | $\geq 19,5: 105$ |
$30-39$ | $30$ | $\leq 29,5: 35$ | $\geq 29,5: 85$ |
$40-49$ | $25$ | $\leq 39,5: 65$ | $\geq 39,5: 55$ |
$50-59$ | $15$ | $\leq 49,5: 90$ | $\geq 49,5: 30$ |
$60-69$ | $10$ | $\leq 59,5: 105$ | $\geq 59,5: 15$ |
$70-79$ | $5$ | $\leq 69,5: 115$ | $\geq 69,5: 5$ |
$80-89$ | $0$ | $\leq 79,5: 120$ | $\geq 79,5: 0$ |
Jumlah | $120$ | $-$ | $-$ |
$\therefore$ Pilihan yang sesuai ialah $(D)$
32. Perhatikan grafik histogram berikut!
Modus dari data Histogram tersebut adalah...
$\begin{align}
(A)\ & 23,00 \\
(B)\ & 23,50 \\
(C)\ & 24,33 \\
(D)\ & 24,53 \\
(E)\ & 24,83
\end{align}$
Modus ialah nilai yang paling sering muncul atau frekuensi yang paling besar.
Untuk data tunggal modus suatu data simpel ditemukan, tetapi untuk data berkelompok modus data sedikit lebih indah.
Modus data berkelompok dirumuskan ibarat berikut ini;
$Mo = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c$
dimana;
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus ialah kelas dengan frekuensi paling besar.
- Dari histogram terlihat bahwa kelas yang memiliki frekuensi tertinggi ialah kelas $21-26$ dengan frekuensi $12$, maka kelas modusnya ialah kelas ke-3 dengan interval $21-26$; $(Tb_{mo} = 21,5)$;
- $d_1:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus; $(d_{1}=12-8=4)$;
- $d_2:$ Selisih frekuensi kelas modus dengan kelas sehabis kelas modus; $(d_{2}=12-10=2)$;
- $c:$ Panjang Kelas $(c=26,5-21,5=5)$;
$ \begin{align}
Mo & = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c \\
& = 21,5 + \left( \frac{4}{4 + 2} \right) \cdot 5 \\
& = 21,5 + \left( \frac{4}{6} \right) \cdot 5 \\
& = 21,5 + \frac{20}{6} \\
& = 21,5 + 3,33 \\
& = 24,83
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 24,83$
33. Tabel berikut mengatakan data berat badan anak (dalam kg) di suatu puskesmas.
Kuartil atas data berat badan anak tersebut adalah...
Berat Badan (kg) Frekuensi $3-5$ $9$ $6-8$ $7$ $9-11$ $5$ $12-14$ $12$ $15-17$ $3$ $18-20$ $4$
$\begin{align}
(A)\ & 14,85\ kg \\
(B)\ & 14,75\ kg \\
(C)\ & 13,90\ kg \\
(D)\ & 13,85\ kg \\
(E)\ & 13,75\ kg
\end{align} $
Kuartil ialah suatu nilai pembatas yang membagi data menjadi empat kepingan yang sama besar sehabis diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
Data pada tabel sanggup kita hitung yaitu total frekuensi ialah $n=40$.
- Untuk menentukan letak $Q_{3}$ ada pada data ke- $\left[\frac{3}{4}(n+1) \right]$
- $Q_{3}$ terletak pada data ke- $\left[\frac{3}{4}(40+1) \right]=30,75$
- $Q_{3}$ berada pada data ke-$30,75$ artinya $Q_{3}$ berada pada kelas interval $12-14$ (*9+7+5+12=33)
- Tepi bawah kelas $Q_{3}$: $12-14$
$t_{b}= 12 - 0,5 = 11,5 $ - Frekuensi kumulatif sebelum kelas $Q_{3}$,
$f_{k}= 9+7+5=21$ - Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=12$
- Panjang kelas $c=14,5-11,5=3$
$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
& = 11,5 + \left( \frac{\frac{3}{4} \cdot 40 - 21}{12} \right)3 \\
& = 11,5 + \left( \frac{30 - 21}{12} \right)3 \\
& = 11,5 + \left( \frac{9}{12} \right)3 \\
& = 11,5 + \frac{9}{4} \\
& = 13,75
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 13,75\ kg$
34. Indri menggunting karton membentuk sebuah segitiga sembarang. Masing-masing titik sudutnya ditandai dengan abjad $P,\ Q,\ \text{dan}\ R$ Panjang sisi $PQ$ ialah $15\ cm$, panjang sisi $QR$ ialah $20\ cm$, dan besar sudut $Q$ ialah $30^{\circ}$. Luas segitiga $PQR$ yang dibuat oleh Indri adalah..
$\begin{align}
(A)\ & 75\ cm^{2} \\
(B)\ & 75 \sqrt{2}\ cm^{2} \\
(C)\ & 75 \sqrt{3}\ cm^{2} \\
(D)\ & 150\ cm^{2} \\
(E)\ & 150 \sqrt{2}\ cm^{2}
\end{align}$
Segitiga yang dibuat Indri ialah segitiga $PQR$ dimana diketahui $PQ=15\ cm$, $QR=20\ cm$, dan besar sudut $Q$ ialah $30^{\circ}$.
Luas segitiga $PQR$ sanggup kita hitung dengan memakai luas segitiga kalau diketahui panjang dua sisi dan satu sudut, yaitu:
$\begin{align}
L & = \dfrac{1}{2} \cdot PQ \cdot QR\ \cdot sin\ Q \\
& = \dfrac{1}{2} \cdot PQ \cdot QR\ \cdot sin\ 30^{\circ} \\
& = \dfrac{1}{2} \cdot 15 \cdot 20 \cdot \dfrac{1}{2} \\
& = 15 \cdot 5 \\
& = 75
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(A)\ 75\ cm^{2}$
35. Bahtiar berangkat dari ke kampus pukul $06.30$ setiap pagi. Jika memakai mobil dengan kecepatan rata-rata $40$ km/jam, ia tiba di kampus terlambat $15$ menit. Jika memakai motor dengan kecepatan rata-rata $60$ km/jam, ia tiba di kampus $5$ menit sebelum perkuliahan dimualai. Perkuliahan di kampus Bahtiar dimuali pukul...
$\begin{align}
(A)\ & 07.45 \\
(B)\ & 07.30 \\
(C)\ & 07.15 \\
(D)\ & 07.10 \\
(E)\ & 07.00
\end{align}$
Kita coba selesaikan dengan memisalkan jarak rumah ke kampus ialah $x$ km dan waktu yang diharapkan untuk hingga di kampus tepat waktu ialah $t$ jam.
Dengan kecepatan $40$ km/jam ia tiba di kampus $15$ menit terlambat maka waktu yang diharapkan ialah $t+\dfrac{15}{60}$ jam.
$\begin{align}
v & = \dfrac{s}{t} \\
40 & = \dfrac{x}{t+\dfrac{15}{60}} \\
40t+10 & = x
\end{align}$
Dengan kecepatan $60$ km/jam ia tiba di kampus $5$ menit lebih cepat maka waktu yang diharapkan ialah $t-\dfrac{5}{60}$ jam.
$\begin{align}
v & = \dfrac{s}{t} \\
60 & = \dfrac{x}{t-\dfrac{5}{60}} \\
60t-5 & = x
\end{align}$
dari nilai $x$ yang kiat peroleh diatas sanggup kita simpulkan
$\begin{align}
40t+10 & = 60t-5 \\
10+5 & = 60t-40t \\
15 & = 20t \\
t & = \dfrac{15}{20}
t & = \dfrac{3}{4}
\end{align}$
Waktu tempuh yang diharapkan untuk hadir di kampus tepat waktu ialah $t$ jam atau $\dfrac{3}{4}$ jam atau $45$ menit. Sehingga kalau berangkat dari rumah pukul $06.30$, kampus masuk $07.15$
$\therefore$ Pilihan yang sesuai ialah $(C)\ 07.15$
36. Diketahui barisan geometri dengan $U_{5}=6$ dan $U_{9}=24$. Suku ke-4 barisan tersebut adalah...
$\begin{align}
(A)\ & 4\sqrt{3} \\
(B)\ & 3\sqrt{3} \\
(C)\ & 3\sqrt{2} \\
(D)\ & 2\sqrt{3} \\
(E)\ & 2\sqrt{2}
\end{align}$
Catatan tenatang barisan geometri untuk merampungkan soal diatas ialah suku ke-n barisan geometri ialah $U_{n}=ar^{n-1}$.
$\begin{align}
U_{5} & = ar^{5-1} \\
6 & = ar^{4}
\end{align}$
$\begin{align}
U_{9} & = ar^{9-1} \\
24 & = ar^{8} \\
24 & = ar^{4} \cdot r^{4} \\
24 & = 6 \cdot r^{4} \\
4 & = r^{4} \\
4^{\dfrac{1}{4}} & = r \\
2^{\dfrac{1}{2}} & = r \\
\sqrt{2} & = r
\end{align}$
untuk $r=\sqrt{2}$ maka
$\begin{align}
6 & = ar^{4} \\
6 & = a (4) \\
a & = \dfrac{3}{2}
\end{align}$
$\begin{align}
U_{4} & = ar^{4-1} \\
& = ar^{3} \\
& = \dfrac{3}{2} \cdot (\sqrt{2})^{3} \\
& = \dfrac{3}{2} \cdot 2\sqrt{2} \\
& = 3\sqrt{2}
\end{align}$
$\therefore$ Pilihan yang sesuai ialah $(C)\ 3\sqrt{2}$
37. Persamaan kuadrat $2x^{2}+12x+17=0$ memiliki akar-akar $\alpha$ dan $\beta$. Persamaan kuadrat baru yang akar-akarnya $\dfrac{\alpha-2}{2}$ dan $\dfrac{\beta-2}{2}$ ialah $ax^{2}+bx+c=0$. Nilai $2a+b+c$ adalah...
Persamaan kuadrat $2x^{2}+12x+17=0$ memiliki akar-akar $\alpha$ dan $\beta$ maka:
$\begin{align}
\alpha + \beta & = -\dfrac{b}{a}=-\dfrac{12}{2}=-6 \\
\alpha \times \beta & = \dfrac{c}{a}=\dfrac{17}{2}=8\dfrac{1}{2}
\end{align}$
Salah satu cara menyusun persamaan kuadrat ialah dengan mengetahui hasil jumlah dan hasil kali akar persamaan kuadrat tersebut.
Jika sebuah persamaan kuadrat akar-akarnya ialah $x_{1}$ dan $x_{2}$ maka persamaan kuadrat tersebut adalah:
$x^{2}-\left( x_{1}+x_{2}\right)x+\left( x_{1} \times x_{2}\right)=0$
$\begin{align}
x_{1}+x_{2} & = \dfrac{\alpha-2}{2} + \dfrac{\beta-2}{2} \\
& = \dfrac{\alpha-2+\beta-2}{2} \\
& = \dfrac{\alpha+\beta-4}{2} \\
& = \dfrac{-6-4}{2} \\
& = -5
\end{align}$
$\begin{align}
x_{1} \times x_{2} & = \dfrac{\alpha-2}{2} \times \dfrac{\beta-2}{2} \\
& = \dfrac{\alpha \beta -2(\alpha + \beta)+4}{4} \\
& = \dfrac{8\dfrac{1}{2} -2(-6)+4}{4} \\
& = \dfrac{8\dfrac{1}{2} +16}{4} \\
& = \dfrac{24\dfrac{1}{2}}{4} \\
& = \dfrac{49}{8}
\end{align}$
Persamaan kuadrat yang baru adalah:
$\begin{align}
x^{2}-\left( x_{1}+x_{2}\right)x+\left( x_{1} \times x_{2}\right) & = 0 \\
x^{2}-\left( -5 \right)x+\left( \dfrac{29}{8} \right) & = 0 \\
x^{2}+5x+ \dfrac{49}{8} & = 0 \\
8x^{2}+40x+ 49 & =0
\end{align}$
(*soal ini memiliki banyak jawaban)
$\therefore$ Nilai $2a+b+c$ ialah $2(8)+40+49=105$
38. Diketahui
$f(x)=\begin{cases}3x-a,\ x\leq 2 \\
2x+1,\ x \gt 2 \end{cases}$
Agar $\lim\limits_{x \to 2}f(x)$ memiliki nilai, maka $a=...$
Berdasarkan defenisi limit, semoga $\lim\limits_{x \to 2}f(x)$ memiliki nilai maka Limit Kiri = Limit Kanan secara simbol dituliskan $\lim\limits_{x \to 2^{+}}f(x)=\lim\limits_{x \to 2^{-}}f(x)=L$
Limit kanan $\lim\limits_{x \to 2^{+}}f(x)$
$\lim\limits_{x \to 2^{+}}(2x+1)=2(2)+1=5$
Limit kiri $\lim\limits_{x \to 2^{-}}f(x)$
$\lim\limits_{x \to 2^{-}}(3x-a)=3(2)-a=6-a$
Berdasarkan defenisi semoga $\lim\limits_{x \to 2}f(x)$ memiliki nilai yaitu Limit Kiri = Limit Kanan maka:
$\begin{align}
6-a & = 5 \\
6-5 & = a \\
a & = 1
\end{align}$
$\therefore$ Nilai $a$ ialah $1$
39. Nilai $x$ yang memenuhi fungsi trigonometri $f(x)=\sqrt{2}\ cos\ 3x+1$ memotong sumbu $X$ pada interval $180^{\circ} \leq x \leq 270^{\circ}$ adalah...
Fungsi $f(x)=\sqrt{2}\ cos\ 3x+1$ memotong sumbu $x$ sehingga:
$\begin{align}
\sqrt{2}\ cos\ 3x+1 & = 0 \\
\sqrt{2}\ cos\ 3x & = -1 \\
cos\ 3x & = -\dfrac{1}{\sqrt{2}} \\
cos\ 3x & = -\dfrac{1}{2}\sqrt{2} \\
cos\ 3x & = cos\ 225
\end{align}$
$\begin{align}
3x = 225+k \cdot 360\ & \vee\ 3x = -225+k \cdot 360 \\
x = 75+k \cdot 120\ & \vee\ x = -75+k \cdot 120
\end{align}$
- Untuk $k=-1$
$x = -45 \vee\ x = -195$ - Untuk $k=0$
$x = 75 \vee\ x = -75$ - Untuk $k=1$
$x = 195 \vee\ x = 45$ - Untuk $k=2$
$x = 315 \vee\ x = 165$ - Untuk $k=3$
$x = 435 \vee\ x = 285$
$\therefore$ Nilai $x$ yang memenuhi ialah $195$
40. Gambar berikut merupakan sketsa arena pameran
Banyak cara seorang pengunjung sanggup masuk dan keluar arena pameran tersebut adalah...
Pintu masuk arena pameran ada $4$ pintu dan terdapat dua gedung di dalam arena pameran, sehingga banyak cara masuk dan keluar gedung ada $2$ cara yaitu lewat geduang A atau $B$.
Total banyak cara ialah $4 \times 2 \times 2 + 4 \times 1 \times 3=16+12=28$
$\therefore$ Banyak cara ialah $28$
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Jika tertarik untuk menyimpan catatan calon guru di atas dalam bentuk file (.pdf) silahkan di download pada link berikut ini:
- Soal Simulasi UNBK Matematika SMA IPA ๐ Download
- Soal dan Pembahasan Simulasi UNBK Matematika SMA IPA ๐ Download
Jangan Lupa Untuk Berbagi ๐Share is Caring ๐ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐
Sebagai tambahan, mari kita simak video pengenalan pertidaksamaan bentuk akar;
Belum ada Komentar untuk "40 Soal Simulasi Unbk Matematika Sma Ipa Tahun 2020 (*Soal Dan Pembahasan Paket A)"
Posting Komentar