40 Soal Dan Pembahasan Unbk Matematika Smp Tahun 2019 (*Simulasi Unbk 2020)

Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)Catatan calon guru yang akan kita diskusikan berikut ini yaitu ihwal soal dan pembahasan UNBK Matematika SMP tahun 2019.

Perbedaan soal pada UNBK dan UNKP tidak terlalu signifikan, sebab anatara UNBK dan UNKP yang berbeda yaitu media mengerjakan soalnya. UNBK yaitu Ujian Nasional Berbasis Komputer, dimana siswa mengerjakan soal pada komputer, sedangkan UNKP yaitu Ujian Nasional Berbasis Kertas dan Pensil (UNKP), dimana siswa mengerjakan pada Lembar Jawaban Komputer (LJK).

Karena soal yang diujikan pada UNBK dan UNKP tidak terlalu jauh sehingga soal-soal pada UNBK, UNKP atau simulasi UNBK pada tahun sebelumnya sangat baik dijadikan materi latihan persiapan dalam menghadapai UNKP atau UNBK Matematika SMP.

Berikut beberapa catatan calon guru ihwal soal dan pembahasan UNBK Matematika SMP, yang sanggup dijadikan materi latihan dalam persiapan menghadapi UNBK atau UNKP Matematika SMP.
Untuk melengkapai materi latihan dalam persiapan menghadapi UNBK Matematika SMP, berikut kita diskusikan soal dan pembahasan UNBK Matematika SMP Tahun 2019, mari berlatih dan diskusi dari soal-soal berikut:

1. Suatu gedung perkantoran dengan ukuran $20$ meter $\times$ $30$ meter. Ukuran gedung tersebut pada skema yaitu $40\ cm \times 60\ cm$. Skala yang digunakan pada skema tersebut adalah...
$\begin{align}
(A)\ & 1:50 \\
(B)\ & 1:100 \\
(C)\ & 1:500 \\
(D)\ & 1:1000
\end{align}$
Alternatif Pembahasan:

Kita ketahui untuk menghitung skala pada peta adalah:
$\text{skala}=\dfrac{\text{Jarak pada peta}}{\text{Jarak sebenarnya}}$

Sehingga kalau kita sesuaikan dengan apa yang diketahui pada soal sanggup kita simpulkan:
$\begin{align}
\text{skala} &= \dfrac{\text{Jarak pada peta}}{\text{Jarak sebenarnya}} \\
&=\dfrac{40\ cm}{20\ m} \\
&=\dfrac{40\ cm}{20\ \times 100\ cm} \\
&=\dfrac{40\ cm}{2000\ cm} \\
&=\dfrac{1 }{50 }
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(A)\ 1:50$

2. Rumus suku ke-$n$ suatu barisan yaitu $U_{n}=3n+2$. Jumlah suku ke-$25$ dan suku ke-$27$ dari barisan tersebut adalah...
$\begin{align}
(A)\ & 154 \\
(B)\ & 160 \\
(C)\ & 164 \\
(D)\ & 166
\end{align}$
Alternatif Pembahasan:

Untuk barisan dengan suku ke-$n$ yaitu $U_{n}=3n+2$, maka berlaku:
$\begin{align}
U_{n} &= 3n+2 \\
U_{25} &= 3(25)+2=77 \\
U_{27} &= 3(27)+2=83 \\
\hline
U_{25}+U_{27} &= 160
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ 160$

3. Toni menabung di bank dengan besar tabungan besar tabungan awal $Rp1.200.000,00$, suku bunga tabungan $9\%$ per tahun. Ketika ia mengambil seluruh uang tabungannya, jumlah tabungan Toni menjadi sebesar $Rp1.281.000,00$. Lama Toni menabung adalah...
$\begin{align}
(A)\ & 6\ \text{bulan} \\
(B)\ & 8\ \text{bulan} \\
(C)\ & 9\ \text{bulan} \\
(D)\ & 10\ \text{bulan}
\end{align}$
Alternatif Pembahasan:

Besar bunga yang diterima Toni selama ia menabung yaitu $1.281.000 - 1.200.000=Rp81.000,00$.

Bunga bank selama setahun yaitu $9\%$ sehingga besar bunga yang diperoleh adalah:
$\dfrac{9}{100} \times 1.200.000 =108.000$

Besar bunga sebulan yaitu $108.000 \div 12=9.000$.

Lama Toni menabung yaitu $81.000 \div 9.000=9$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 9\ \text{bulan} $

4. Perbandingan permen Aurel, Rani, dan Dhea $5:3:2$. Sedangkan jumlah permen Aurel dan Rani $64$. Jumlah permen tiga orang tersebut adalah...
$\begin{align}
(A)\ & 72 \\
(B)\ & 80 \\
(C)\ & 88 \\
(D)\ & 108
\end{align}$
Alternatif Pembahasan:

Perbandingan permen Aurel, Rani, dan Dhea yaitu $5:3:2$ sanggup kita tuliskan $5x:3x:2x$, sehingga:

  • banyak permen Aurel yaitu $5x$
  • banyak permen Rani yaitu $3x$
  • banyak permen Dhea yaitu $2x$
Jumlah permen Aurel dan Rani $5x+3x=64$ sehingga $8x=64$ atau $x=8$.

Jumlah permen tiga orang tersebut yaitu $10x=10 \times 8=80$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ 80$

5. Suatu pekerjaan sanggup diselesaikan oleh $42$ pekerja dalam waktu $50$ hari. Agar pekerjaan tersebut sanggup akhir dalam waktu $35$ hari, perlu tambahan pekerja sebanyak...
$\begin{align}
(A)\ & 60\ \text{orang} \\
(B)\ & 22\ \text{orang} \\
(C)\ & 18\ \text{orang} \\
(D)\ & 10\ \text{orang} \\
\end{align}$
Alternatif Pembahasan:

Situasi pekerjaan kalau kita sajikan dalam tabel ilustasinya mirip berikut ini:

pekerja waktu
$p_{1}=42$ $w_{1}=50$
$p_{2}=p$ $w_{2}=42$
Untuk menerima banyak pekerja semoga akhir dalam waktu $35$ hari sanggup menggunakan perbandingan berbalik nilai sebab semakin banyak pekerja dan semakin sedikit waktu:
$\begin{align}
\dfrac{p_{1}}{p_{2}} & = \dfrac{w_{2}}{w_{1}} \\
\dfrac{42}{p} & = \dfrac{35}{50} \\
42 \times 50 & = p \times 35 \\
42 \times 10 & = p \times 7 \\
6 \times 10 & = p \times 1 \\
60 & = p
\end{align}$
Banyak pekerja yang harus ditambah yaitu $60-42=18$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 18\ \text{orang}$

6. Apabila HUT Kemerdekaan RI pada tanggal 17 Agustus jatuh di hari Senin, Hari pendidikan Nasional tanggal 2 Mei pada tahun yang sama adalah...
$\begin{align}
(A)\ & \text{hari Rabu} \\
(B)\ & \text{hari Kamis} \\
(C)\ & \text{hari Jumat} \\
(D)\ & \text{hari Sabtu}
\end{align}$
Alternatif Pembahasan:

Jika kita jabarkan hitung mundur dari tanggal 17 Agutus hingga 2 Mei pada tahun yang sama, penjabarannya yaitu sebagai berikut:

  • 1 Agustus - 17 Agustus = 17 hari
  • 1 Juli - 31 Juli= 31 hari
  • 1 Juni - 30 Juni= 30 hari
  • 2 Mei - 31 Mei = 29 hari
Jarak dari 17 Agustus ke 2 Mei yaitu $17+31+30+29=107$ hari.

Pertanyaan di atas sanggup kita sederhanakan menjadi, jika hari ini yaitu hari Senin, maka $107$ hari yang kemudian yaitu hari...

Karena satu minggu ada $7$ hari, maka hari akan berulang kembali setiap $7$ hari sehingga $107 \div 7 = 15\ \text{sisa}\ 2$.

Makara $107$ hari yang kemudian sama dengan $2$ hari yang lalu, sehingga kalau hari ini yaitu hari Senin, maka $2$ hari yang kemudian yaitu hari Sabtu.

$\therefore$ Pilihan yang sesuai yaitu $(D)\ \text{hari Sabtu}$

7. Urutan pecahan terkecil ke terbesar dari bilangan $0,6\ ;\ 55\%\ ;\ \dfrac{2}{3}\ ;\ 0,54$ adalah...
$\begin{align}
(A)\ & 55\%\ ;\ 0,54\ ;\ 0,6\ ;\ \dfrac{2}{3} \\
(B)\ & 0,54\ ;\ 55\%\ ;\ 0,6\ ;\ \dfrac{2}{3} \\
(C)\ & \dfrac{2}{3}\ ;\ 0,6\ ;\ 55\%\ ;\ 0,54 \\
(D)\ & 0,54\ ;\ 55\%\ ;\ \dfrac{2}{3};\ 0,6\
\end{align}$
Alternatif Pembahasan:

Untuk membandingkan nilai dua pecahan atau lebih salah satu alternatifnya yaitu dengan mengubah salah satu nilai pembilang atau penyebut menjadi sama dengan catatan tidak merubah nilai pecahan.

Misal kita membandingkan bilangan di atas;

  • $55\%=\dfrac{55}{100}=\dfrac{330}{600}$
  • $\dfrac{2}{3}=\dfrac{40}{60}=\dfrac{400}{600}$
  • $0,54=\dfrac{54}{100}=\dfrac{324}{600}$
  • $0,6=\dfrac{60}{100}=\dfrac{360}{600}$
Dari pecahan di atas kita sudah sanggup urutkan dari terkecil ke terbesar yaitu $\dfrac{324}{600},\ \dfrac{330}{600},\ \dfrac{360}{600},\ \dfrac{400}{600}$ atau $0,54\ ;\ 55\%\ ;\ 0,6\ ;\ \dfrac{2}{3}$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ 0,54\ ;\ 55\%\ ;\ 0,6\ ;\ \dfrac{2}{3}$

8. Nilai dari $\left(3 \sqrt{3} \right)^{-2}$ adalah...
$\begin{align}
(A)\ & -27 \\
(B)\ & -\dfrac{1}{27} \\
(C)\ & \dfrac{1}{27} \\
(D)\ & 27
\end{align}$
Alternatif Pembahasan:

Untuk menghitung bilangan berpangkat di atas catatan calon guru ihwal bilangan berpangkat berikut mungkin bermanfaat:

  • $a^{m} \cdot a^{n} = a^{m+n}$
  • $(a^{m})^{n}=a^{m \cdot n}$
  • $a^{-n}=\dfrac{1}{a^{n}}$
  • $\sqrt{a}=a^{\frac{1}{2}}$
$\begin{align}
\left(3 \sqrt{3} \right)^{-2} &= \left(3 \sqrt{3} \right)^{-2} \\
&= \left(3 \cdot 3^{\frac{1}{2} } \right)^{-2} \\
&= \left( 3^{1+\frac{1}{2} } \right)^{-2} \\
&= \left( 3^{ \frac{3}{2} } \right)^{-2} \\
&= 3^{-3} = \dfrac{1}{3^{3}} = \dfrac{1}{27}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ \dfrac{1}{27}$

9. Hasil dari $3\sqrt{7} \times \sqrt{8} + 5\sqrt{14}$ adalah...
$\begin{align}
(A)\ & 15\sqrt{29} \\
(B)\ & 11\sqrt{29} \\
(C)\ & 15\sqrt{14} \\
(D)\ & 11\sqrt{14}
\end{align}$
Alternatif Pembahasan:

Untuk menghitung operasi aljabar bentuk akar di atas catatan calon guru ihwal bentuk akar berikut mungkin bermanfaat yaitu:

  • $a \sqrt{m}+b \sqrt{m}=\left (a+b \right )\sqrt{m}$
  • $a \sqrt{p} \times b \sqrt{q}=\left (a \times b \right )\sqrt{p \times q}$
$\begin{align}
3\sqrt{7} \times \sqrt{8} + 5\sqrt{14} &= 3\sqrt{7} \times 2\sqrt{2} + 5\sqrt{14} \\
&= 6\sqrt{14} + 5\sqrt{14} \\
&= 11\sqrt{14}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(D)\ 11\sqrt{14}$


10. Pada ujian Matematika, skor total ditentukan dengan aturan skor $4$ untuk tanggapan benar, skor $-2$ untuk tanggapan salah, dan skor $-1$ kalau tidak menjawab. Dari $50$ soal yang diberikan seorang anak berhasil menjawab $40$ soal dan memperoleh skor total $126$. Banyak soal yang dijawab benar oleh anak tersebut adalah...
$\begin{align}
(A)\ & 30\ \text{soal} \\
(B)\ & 36\ \text{soal} \\
(C)\ & 37\ \text{soal} \\
(D)\ & 40\ \text{soal} \\
\end{align}$
Alternatif Pembahasan:


Kita misalkan $B$ untuk banyak soal yang di jawab BENAR, $S$ untuk banyak soal yang di jawab SALAH, dan $K$ untuk banyak soal yang tidak di jawab atau KOSONG.
$\begin{align}
Nilai &= B \times (4) + S \times (-2) + K \times (-1) \\
126 &= B \times (4) + (40-B) \times (-2) + 10 \times (-1) \\
126 &= 4B -80+2B -10 \\
126+90 &= 6B \\
216 &= 6B \\
B &= \dfrac{216}{6}=36
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ 36 \text{soal}$

11. Peneliti A dan B mengembangbiakkan masing-masing $35$ amuba. Amuba Peneliti A sanggup membelah diri menjadi dua setiap $15$ menit sedangkan amuba Peneliti B membelah diri menjadi dua setiap $25$ menit. Amuba peneliti A ketika ini menjadi $1.120$. Peneliti B akan memiliki amuba ketika ini sebanyak...
$\begin{align}
(A)\ & 135 \\
(B)\ & 192 \\
(C)\ & 256 \\
(D)\ & 280
\end{align}$
Alternatif Pembahasan:

Amuba peneliti A ketika ini sebanyak $1.120$ yang berawal dari $35$ amuba.
$35\underset{1\times}{\rightarrow}70\underset{2\times}{\rightarrow}140\underset{3\times}{\rightarrow}280\underset{4\times}{\rightarrow}560\underset{5\times}{\rightarrow}1120$
Dari skema di atas pembelahan amuba terjadi $5 \times$, dan waktu yang dibutuhkan yaitu $5 \times 15 =75$ menit.

Untuk waktu selama $75$ menit amuba pada peneliti B yang membelah diri setiap $25$ menit akan membelah sebanyak $3 \times$,
$35\underset{1\times}{\rightarrow}70\underset{2\times}{\rightarrow}140\underset{3\times}{\rightarrow}280$

$\therefore$ Pilihan yang sesuai yaitu $(D)\ 280$

12. Seorang siswa ingin membuat skema sebuah rumah pada kertas gambar yang berukuran $100\ cm \times 70\ cm$. Panjang dan lebar tanah tempat rumah itu berada yaitu $200\ m$ dan $140\ m$. Skala yang mungkin digunakan untuk skema rumah tersebut adalah...
$\begin{align}
(A)\ & 1 : 20 \\
(B)\ & 1 : 50 \\
(C)\ & 1 : 100 \\
(D)\ & 1 : 250
\end{align}$
Alternatif Pembahasan:

Kita ketahui untuk menghitung skala pada peta adalah:
$\text{skala}=\dfrac{\text{Jarak pada peta}}{\text{Jarak sebenarnya}}$

Sehingga kalau kita sesuaikan dengan apa yang diketahui pada soal sanggup kita simpulkan:
$\begin{align}
\text{skala} &= \dfrac{\text{Jarak pada peta}}{\text{Jarak sebenarnya}} \\
&=\dfrac{100\ cm}{200\ m} \\
&=\dfrac{100\ cm}{200\ \times 100\ cm} \\
&=\dfrac{100\ cm}{20000\ cm} \\
&=\dfrac{1 }{200 }
\end{align}$
Skala peta yang mungkin dibuat yaitu $1 : 250$, sebab dengan ukuran mirip pada soal, skala $ 1:200$ yaitu skala yang paling kecil.

$\therefore$ Pilihan yang sesuai yaitu $(A)\ 1:250$

13. Diketahui $(p,q)$ yaitu penyelesaian dari sistem persamaan linier $x+y=10$ dan $x-y=2$. Nilai dari $2p+3q$ adalah...
$\begin{align}
(A)\ & 10 \\
(B)\ & 12 \\
(C)\ & 24 \\
(D)\ & 26
\end{align}$
Alternatif Pembahasan:

Dengan mengeliminasi atau substitusi sanggup kita peroleh himpunan penyelesaian sistem persamaan di atas;
$\begin{array}{c|c|cc}
x+y = 10 & \\
x-y = 2 & + \\
\hline
2x = 12 \\
x = 6 \\
y = 4
\end{array} $
Nilai $(p,q)$ yaitu $(6,4)$ maka $2p+3q=2(6)+3(4)=24$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 24$

14. Diketahui $n$ yaitu penyelesaian persamaan $2\dfrac{1}{2}x+\dfrac{3}{4}=2x-1\dfrac{1}{2}$. Nilai $n+5$ adalah...
$\begin{align}
(A)\ & \dfrac{9}{2} \\
(B)\ & \dfrac{17}{4} \\
(C)\ & \dfrac{1}{2} \\
(D)\ & -\dfrac{9}{2}
\end{align}$
Alternatif Pembahasan:


$\begin{align}
2\dfrac{1}{2}x+\dfrac{3}{4} &= 2x-1\dfrac{1}{2} \\
2\dfrac{1}{2}x-2x &= -\dfrac{3}{4}- \dfrac{3}{2} \\
\dfrac{1}{2}x &= -\dfrac{3}{4}- \dfrac{6}{4} \\
\dfrac{1}{2}x &= -\dfrac{9}{4} \\
x &= -\dfrac{9}{2} \\
\end{align}$
Nilai $n=-\dfrac{9}{2}$ sehingga $n+5=-\dfrac{9}{2}+5= \dfrac{1}{2}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ \dfrac{1}{2}$

15. Sekelompok siswa terdiri dari $25$ orang. Terdapat $14$ orang gemar berenang, $15$ orang gemar sepakbola, dan yang tidak gemar keduanya $5$ orang. Banyak siswa yang genar keduanya adalah...
$\begin{align}
(A)\ & 5\ \text{orang} \\
(B)\ & 6\ \text{orang} \\
(C)\ & 9\ \text{orang} \\
(D)\ & 29\ \text{orang}
\end{align}$
Alternatif Pembahasan:

Jika kita gambarkan dalam diagram venn keadaan siswa di atas, ilustrasinya mirip berikut ini;

Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Dari diagram di atas, kita peroleh:
$\begin{align}
n(S) & = n(R \cup SB) +n(R \cup SB)' \\
n(S) & = n(R)+n(SB)-n(R \cap SB)+5 \\
25 & = 14-x+x+15-x+x-x+5 \\
25 & = 34-x \\
x & = 34-25=9
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 9$

16. Diketahui fungsi $f(x)=ax+b$. Jika $f(-2)=-11$ dan $f(4)=7$, nilai $a+b$ adalah...
$\begin{align}
(A)\ & 3 \\
(B)\ & -2 \\
(C)\ & -5 \\
(D)\ & -8
\end{align}$
Alternatif Pembahasan:

Jika kita substitusi nilai $f(-2)=-11$ dan $f(4)=7$ ke $f(x)=ax+b$, kita akan peroleh;
$\begin{array}{c|c|cc}
f(-2): -2a+b = -11 & \\
f(4): 4a+b = 7 & - \\
\hline
-6a = -18 & 4(3)+b = 7 \\
a = 3 & b = 7-12=-5 \\
\hline
a+b= -2
\end{array} $

$\therefore$ Pilihan yang sesuai yaitu $(B)\ -2$

17. Harga sepasang sepatu dua kali harga sepasang sandal. Ardi membeli $2$ pasang sepatu dan $3$ pasang sandal dengan harga $Rp420.000,00$. Jika Doni membeli $3$ pasang sepatu dan $2$ pasang sandal, Doni harus membayar sebesar...
$\begin{align}
(A)\ & Rp180.000,00 \\
(B)\ & Rp360.000,00 \\
(C)\ & Rp480.000,00 \\
(D)\ & Rp540.000,00
\end{align}$
Alternatif Pembahasan:

Harga sepatu kita misalkan dengan $U$ dan harga sandal dengan $L$, sehingga kita peroleh sebuah persamaan $U=2L$.
$\begin{align}
2U+3L &= 420.000 \\
2(2L)+3L &= 420.000 \\
4L+3L &= 420.000 \\
7L &= 420.000 \\
L &= \dfrac{420.000}{7} \\
L &= 60.000 \\
U &= 120.000 \\
3U+2L &= 3(120.000)+2(60.000) \\
&= 360.000 +120.000 \\
&= 480.000
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 480.000$

18. Dalam sebuah tempat parkir terdapat $90$ kendaraan yang terdiri dari mobil beroda $4$ dan sepeda motor beroda $2$. Jika dihitung roda keseluruhan ada $248$ buah. Biaya parkir sebuah mobil $Rp5.000,00$, sedangkan biaya parkir sebuah sepeda motor $Rp2.000,00$. Berapa pendapatan uang parkir dari kendaraan yang ada tersebut?
$\begin{align}
(A)\ & Rp270.000,00 \\
(B)\ & Rp282.000,00 \\
(C)\ & Rp300.000,00 \\
(D)\ & Rp348.000,00
\end{align}$
Alternatif Pembahasan:

Banyak mobil kita misalkan dengan $m$ dan banyak sepeda motor dengan $s$.

Banyak kendaraan yaitu $90$ sehingga kita peroleh persamaan $m+s=90$;
Banyak roda kendaraan yaitu $248$ sehingga kita peroleh persamaan $4m+2s=248$;
$\begin{array}{c|c|cc}
m+s = 90 & \\
4m+2s = 248 & \\
\hline
4m+4s = 360 & \\
4m+2s = 248 & (-) \\
\hline
2s = 112 \\
s = 56 \\
m = 34
\end{array}$
Biaya parkir yang diperoleh adalah
$\begin{align}
B &= 5.000m+2.000s \\
&= 5.000(34)+2.000(56) \\
&= 170.000 +112.000 \\
&= 282.000
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ 282.000$


19. Perhatikan persamaan garis berikut.
$\begin{align}
(I)\ & 4y=16x+40 \\
(II)\ & 12y=24x+36 \\
(III)\ & 6y=24x+30 \\
(IV)\ & 6y=-12x+30
\end{align}$
Pasangan garis yang sejajar adalah...

$\begin{align}
(A)\ & (I)\ \text{dan}\ (II) \\
(B)\ & (I)\ \text{dan}\ (III) \\
(C)\ & (II)\ \text{dan}\ (IV) \\
(D)\ & (III)\ \text{dan}\ (IV)
\end{align}$
Alternatif Pembahasan:

Dua buah garis dikatakan sejajar kalau gradien kedua garis tersebut yaitu sama. Untuk garis $ay=bx+c$ gradien $m=\dfrac{b}{a}$.
$\begin{align}
(I)\ & 4y=16x+40\ \rightarrow\ m=\dfrac{16}{4}=4 \\
(II)\ & 12y=24x+36\ \rightarrow\ m=\dfrac{24}{12}=2 \\
(III)\ & 6y=24x+30\ \rightarrow\ m=\dfrac{24}{6}=4 \\
(IV)\ & 6y=-12x+30\ \rightarrow\ m=\dfrac{-12}{6}=-2
\end{align}$
Pasangan garis yang sejajar yaitu garis $(I)$ dan $(III)$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ (I)\ \text{dan}\ (III)$

20. Bentuk sederhana dari $4x+12y-10z-8x+5y-7z$ adalah...
$\begin{align}
(A)\ & -12x+12y-3z \\
(B)\ & -4x+17y-17z \\
(C)\ & 4x+7y-17z \\
(D)\ & 12x+12y+17z
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& 4x+12y-10z-8x+5y-7z \\
& = 4x+12y-10z-8x+5y-7z \\
& = 4x-8x+12y+5y-10z-7z \\
& = -4x+17y-17z
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ -4x+17y-17z$

21. Diketahui himpunan
$ \begin{align}
S &= \text{ \{bilangan asli kurang dari 12\}} \\
A &= \text{\{bilangan ganjil kurang dari 11\}} \\
B &= \text{\{bilangan prima kurang dari 12\}} \\
\end{align} $
Maka $\left( A \cap B \right)^{c}$ adalah...

$\begin{align}
(A)\ & \{3, 5, 7\} \\
(B)\ & \{1, 2, 9, 11\} \\
(C)\ & \{4, 6, 8, 10\} \\
(D)\ & \{1, 2, 4, 6, 8, 9, 10,11\}
\end{align}$
Alternatif Pembahasan:

Himpunan Semesta $S$, Himpunan $A$ dan Himpunan $B$ kalau kita tuliskan anggota himpunannya adalah;
$ \begin{align}
S &= \{1,2,3,4, \cdots ,9,10,11 \} \\
A &= \{1,3,5,7,9 \} \\
B &= \{2,3,5,7,11 \} \\
\hline
A \cap B &= \{ 3,5,7,\}
\end{align} $
$\left( A \cap B \right)^{c}$ artinya yang bukan anggota $A \cap B = \{ 3,5,7,\}$, yaitu: $\{1, 2, 4, 6, 8, 9, 10,11\}$

$\therefore$ Pilihan yang sesuai yaitu $(D)\ \{1, 2, 4, 6, 8, 9, 10,11\}$

22. Perhatikan diagram panah berikut!
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Rumus fungsi dari $A$ ke $B$ adalah...

$\begin{align}
(A)\ & f(x)=-3x-2 \\
(B)\ & f(x)=x+2 \\
(C)\ & f(x)=2x+3 \\
(D)\ & f(x)=3x+4
\end{align}$
Alternatif Pembahasan:

Pilihan pada fungsi yaitu fungsi linear, sehingga fungsi sanggup kita misalkan dengan $f(x)=ax+b$
$\begin{align}
f(-1) &: -a+b=1 \\
f(0) &: b=3 \\
f( 1) &: a+b=5 \\
\hline
a & = 2 \\
f(x) &= 2x+3
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ f(x)=2x+3$

23. Perhatikan gambar.
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Besar sudut $BAC$ adalah...

$\begin{align}
(A)\ & 24^{\circ} \\
(B)\ & 28^{\circ} \\
(C)\ & 55^{\circ} \\
(D)\ & 65^{\circ}
\end{align}$
Alternatif Pembahasan:

Untuk setiap segitiga, jumlah sudut dalam segitiga yaitu $180^{\circ}$, sehingga berlaku;
$\begin{align}
180 &= \angle ABC+\angle BCA+\angle BAC \\
180 &= 8x+1+4x+7+2x+4 \\
180 &= 14x+12 \\
180-12 &= 14x \\
\dfrac{168}{14} &= x \\
12 &=x
\end{align}$
Besar $\angle BAC=2x+4=2(12)+4=28$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ 28^{\circ}$

24. Pada gambar berikut, segitiga $PQR$ dan segitiga $STU$ merupakan sua segitiga kongruen. Besar $\angle R=\angle U$ dan $\angle Q=\angle S$. Manakah pasangan sisi yang sama panjang?
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Besar sudut $BAC$ adalah...

$\begin{align}
(A)\ & PR=SU \\
(B)\ & QR=TU \\
(C)\ & PQ=SU \\
(D)\ & PQ=ST
\end{align}$
Alternatif Pembahasan:

Jika kita gambrakan dengan menambahkan info yang ada pada soal, maka gambar segitiga akan tampak mirip berikut ini:

Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Dari gambar di atas, beberapa hal yang sanggup kita simpulkan;
  • $\angle R=\angle U$, $\angle Q=\angle S$, $\angle P=\angle T$
  • $PR=TU$, $PQ=TS$, dan $QR=US$

$\therefore$ Pilihan yang sesuai yaitu $(D)\ PQ=ST$

25. Panjang busur lingkaran dengan sudut pusat $72^{\circ}$ dan panjang jari-jari $10\ cm$ adalah...
$\begin{align}
(A)\ & 62,80\ cm \\
(B)\ & 31,40\ cm \\
(C)\ & 12,56\ cm \\
(D)\ & 6,280\ cm
\end{align}$
Alternatif Pembahasan:

Untuk menghitung panjang busur lingkaran kita membutuhkan keliling lingkaran $\left(k=2 \pi r \right)$. Dengan menggunkan $\pi=3,14$, kita akan peroleh:
$\begin{align}
\text{panjang busur} &= \text{keliling lingkaran} \times \dfrac{\text{sudut pusat}}{360^{\circ} } \\
&= 2 \pi r \times \dfrac{72^{\circ}}{360^{\circ} } \\
&= 2 \cdot 3,14 \cdot 10 \times \dfrac{1}{5 } \\
&= 12,56
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 12,56\ cm$

26. Perhatikan balok berikut!
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Panjang diagonal ruang $DF$ adalah...

$\begin{align}
(A)\ & \sqrt{1696} \\
(B)\ & \sqrt{1552} \\
(C)\ & \sqrt{1440} \\
(D)\ & \sqrt{400}
\end{align}$
Alternatif Pembahasan:

Panjang diagonal ruang $DF$ pada balok $ABCD.EFGH$ adalah
$\begin{align}
DF^{2} &= AB^{2}+BC^{2}+AE^{2} \\
&= 36^{2}+16^{2}+12^{2} \\
&= 1296+256+144 \\
&= 1696 \\
DF &= \sqrt{1696}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(A)\ \sqrt{1696}$

27. Limas dengan bantalan persegi memiliki tinggi $8\ cm$ dan keliling bantalan $60\ cm$, Volume limas tersebut adalah...
$\begin{align}
(A)\ & 160\ cm^{3} \\
(B)\ & 480\ cm^{3} \\
(C)\ & 600\ cm^{3} \\
(D)\ & 640\ cm^{3}
\end{align}$
Alternatif Pembahasan:

Volume limas yaitu $\dfrac{1}{3} \times \text{Luas Alas} \times Tinggi$,

Karena bantalan limas sebuah persegi dengan keliling $60\ cm$, panjang sisinya yaitu $\dfrac{60 \ cm}{4}=15\ cm$ dan luasnya yaitu $\left( 15\ cm \right)^{2}=225\ cm^{2}$.

Volume limas adalah:
$\begin{align}
V &= \dfrac{1}{3} \times \text{Luas Alas} \times \text{Tinggi} \\
&= \dfrac{1}{3} \times 225\ cm^{2} \times 8\ cm \\
&= \dfrac{1}{3} \times 1800\ cm^{3} \\
&= 600\ cm^{3}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 600$


28. Pak Anton membuat taman berbentuk persegi panjang berukuran $6\ m \times 5\ m$. Di tengah taman dibuat kolam berbentuk lingkaran berdiameter $2,8\ m$. Taman di luar kolam tersebut ditanami rumput. Luas taman yang ditanami rumput adalah...
$\begin{align}
(A)\ & 23,84\ m^{2} \\
(B)\ & 25,60\ m^{2} \\
(C)\ & 30,88\ m^{2} \\
(D)\ & 36,16\ m^{2} \\
\end{align}$
Alternatif Pembahasan:

Untuk menghitung luas rumput yang ditanam kita perlu menghitung selisih luas taman dan luas kolam.
$\begin{align}
L_{r} &= L_{t}-L_{k} \\
&= 6 \times 5 - \pi r^{2} \\
&= 30 - \dfrac{22}{7} \cdot (1,4)(1,4) \\
&= 30 - 22 \cdot (0,2)(1,4) \\
&= 23,84
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(A)\ 23,84\ m^{2}$

29. Sebuah taman berbentuk persegipanjang dengan panjang diagonal $(6x+4)$ meter dan $(7x-1)$ meter. Panjang diagonal taman tersebut adalah...
$\begin{align}
(A)\ & 5\ m \\
(B)\ & 26\ m \\
(C)\ & 34\ m \\
(D)\ & 36\ m
\end{align}$
Alternatif Pembahasan:

Panjang diagonal sebuah persegi yaitu sama, sehingga berlaku:
$\begin{align}
6x+4 &= 7x-1 \\
4+1 &= 7x-6x \\
5 &= x \\
\end{align}$
Panjang diagonal yaitu $ 6x+4=6(5)+4=34$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 34\ m$

30. Sebuah pohon yang berada di depan gedung memiliki tinggi $8\ m$. Pada ketika yang sama bayangan gedung berimpit dengan bayangan pohon mirip tampak pada gambar di bawah.
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Tinggi gedung yang sesuai ukuran tersebut adalah....

$\begin{align}
(A)\ & 5,30\ m \\
(B)\ & 6,25\ m \\
(C)\ & 10,00\ m \\
(D)\ & 12,00\ m
\end{align}$
Alternatif Pembahasan:

Jika kita misalkan titik-titik penting pada gambar kita beri nama mirip berikut ini;

Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Dari gambar di atas kita peroleh bahwa $\bigtriangleup ABC$ sebangun dengan $\bigtriangleup ADE$, sehingga berlaku:
$\begin{align}
\dfrac{AB}{AD} &= \dfrac{BC}{DE} \\
\dfrac{10}{15} &= \dfrac{8}{DE} \\
DE &= \dfrac{8 \times 15}{10} \\
DE &= 12
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(D)\ 12,00\ m$

31. Perhatikan gambar
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Panjang $BC$ adalah....

$\begin{align}
(A)\ & \sqrt{16}\ cm \\
(B)\ & \sqrt{48}\ cm \\
(C)\ & \sqrt{64}\ cm \\
(D)\ & \sqrt{192}\ cm
\end{align}$
Alternatif Pembahasan:

Pada gambar terdapat tiga segitiga siku-siku, kita ilustrasikan mirip berikut ini:

Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Dari gambar di atas kita peroleh tiga segitiga siku-siku yang sebangun, sehingga berlaku:
$\begin{align}
\dfrac{AC}{AB} & = \dfrac{AD}{AC} \\
\dfrac{AC}{16} & = \dfrac{4}{AC} \\
AC^{2} & = 64 \\
AC & = 8 \\
\hline
BC^{2} & = AB^{2}-AC^{2} \\
& = 16^{2}-8^{2} \\
& = 256 -64 \\
BC & = \sqrt{192}
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(D)\ \sqrt{192}\ cm$

32. Ayah membuat topi dari kain dengan bentuk mirip gambar.
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Luas kain yang diperlukan utnuk membuat topi tersebut adalah...

$\begin{align}
(A)\ & 1.695,6\ cm^{2} \\
(B)\ & 1.758,4\ cm^{2} \\
(C)\ & 2.072,4\ cm^{2} \\
(D)\ & 2.386,4\ cm^{2}
\end{align}$
Alternatif Pembahasan:

Untuk menghitung banyak kain yang dibutuhkan untuk membuat mirip topi, sama dengan mencari luas selimut kerucut dengan jari-jari $10\ cm$ dan luas selisih dua lingkaran.
Luas selimut kerucut
$\begin{align}
L &= \pi\ \cdot r \cdot s\\
&= 3,14 \cdot 10\ cm \cdot 26\ cm \\
&= 816,4\ cm^{2}
\end{align}$

Luas selisih dua lingkaran
$\begin{align}
L &= L_{2}-L_{1} \\
&= \pi \cdot r^{2}_{2}-\pi \cdot r^{2}_{1} \\
&= 3,14 \cdot 20^{2}- 3,14 \cdot 10^{2} \\
&= 3,14 \cdot 400- 3,14 \cdot 100 \\
&= 1,256- 314 \\
&= 942 cm^{2} \\
\end{align}$

Total luas kain yaitu $816,4+942=1.758,4\ cm^{2}$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ 1.758,4\ cm^{2}$

33. Perhatikan gambar
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Jika luas daerah yang tidak diarsir $55\ cm^{2}$, luas daerah yang diarsir adalah...

$\begin{align}
(A)\ & 5\ cm^{2} \\
(B)\ & 10\ cm^{2} \\
(C)\ & 20\ cm^{2} \\
(D)\ & 40\ cm^{2}
\end{align}$
Alternatif Pembahasan:

Gambar di atas kita coba bagi menjadi tiga belahan yaitu, belahan $A$, $B$ dan $C$, mirip gambar berikut;

Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Luas daerah yang tidak diarsir $A+C=55$ dan luas daerah yang diarsir $B$, sehingga berlaku:
$\begin{align}
[A+B ] &= \dfrac{1}{2} \cdot 10\ \cdot 7 \\
&= 35 \\
\hline
[B+C ] &= \dfrac{1}{2} \cdot 10\ \cdot 12 \\
&= 60 \\
\hline
[A+B+B+C ] &= 35+60 \\
[A+C ]+[2B ] &= 95 \\
55+[2B ] &= 95 \\
[2B ] &= 95-55 \\
[2B ] &= 40 \\
[ B ] &= 20
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 20\ cm^{2}$

34. Perhatikan gambar
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Seseorang akan mengukur lebar sungai dengan cara menancapkan tongkat $A,B,C, \text{dan}\ D$ mirip pada gambar. Tongkat $A$ segaris dengan pohon $E$ diseberang sungai. Jika $AB=12\ m$, $BD=15\ m$ dan $CD=25\ m$, lebar sungai adalah...

$\begin{align}
(A)\ & 15\ m \\
(B)\ & 20\ m \\
(C)\ & 31\ m \\
(D)\ & 35\ m
\end{align}$
Alternatif Pembahasan:

Dari gambar di atas, $\bigtriangleup ABE$ sebangun dengan $\bigtriangleup BCD$ sebab $\angle BAE=\angle BDC$ dan $\angle ABE=\angle CBD$, sehingga berlaku:
$\begin{align}
\dfrac{AB}{BD} &= \dfrac{AE}{CD} \\
\dfrac{12}{15} &= \dfrac{AE}{25} \\
\dfrac{4}{5} \times 25 &= AE \\
20 &= AE
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(B)\ 20\ m $

35. Pada pengundian dua dadu secara bersamaan, peluang muncul mata dadu berjumlah $9$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{2} \\
(B)\ & \dfrac{1}{3} \\
(C)\ & \dfrac{1}{4} \\
(D)\ & \dfrac{1}{9}
\end{align}$
Alternatif Pembahasan:

Pada pelemparan dua buah dadu, hasil yang mungkin yaitu $n(S)=36$
Hasil yang diperlukan muncul jumlah mata dadu $9$, $(3,6), (4,5), (5,4), (6,3)$ $n(E)=4$.
Peluang terjadi jumlah mata dadu $9$
$P(9)=\dfrac{n(E)}{n(S)}=\dfrac{4}{36}=\dfrac{1}{9}$

$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{1}{9}$

36. Tim Bola Basket terdiri dari $5$ siswa memiliki rata-rata berat badan $45$ kg. Selisih berat badan terbesar dan terkecil $15$ kg. Ada satu orang terberat dan lainnya sama beratnya. Berat badan siswa yang terbesar adalah...
$\begin{align}
(A)\ & 42\ kg \\
(B)\ & 55\ kg \\
(C)\ & 57\ kg \\
(D)\ & 60\ kg \\
\end{align}$
Alternatif Pembahasan:

Kita misalkan berat badan tim bola basket yaitu $ x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ dimana $ x_{1}= x_{2}= x_{3}= x_{4}$, $x_{5}-x_{1}=15$ dan $\bar{x}=43$ sehingga berlaku:
$\begin{align}
\bar{x} &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{5}}{5} \\
45 &= \dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{5}}{5} \\
45 &= \dfrac{4x_{1}+x_{5}}{5} \\
45 \times 5 &= 4x_{1}+x_{5} \\
225 &= 4x_{1}+x_{5} \\
15 &= x_{5}-x_{1} \\
\hline
210 &= 5x_{1} \\
x_{1} &= \dfrac{210}{5}=42 \\
x_{5} &= 42+15=57
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 57\ kg$


37. Dalam suatu jadwal untuk memperingati Hari Kemerdekaan, ketua RT mengadakan undian berhadiah dengan hadiah utama sebuah sepeda. Jika dalam undian tersebut terdapat $300$ kupon. Andi ingin menerima hadiah utama dengan memiliki $15$ kupon. Peluang Andi untuk menerima sepeda adalah...
$\begin{align}
(A)\ & \dfrac{1}{10} \\
(B)\ & \dfrac{1}{6} \\
(C)\ & \dfrac{1}{20} \\
(D)\ & \dfrac{2}{5}
\end{align}$
Alternatif Pembahasan:

Banyak kupon Andi untuk menerima satu buah sepeda yaitu $15$ kupon, sehingga yang diharapak terpilih kupon diantara $15$ yang dimiliki Andi, $n(A)=15$.

Banyak kupon keseluruhan yaitu $300$, ini yaitu banyak kemungkinan yang terpilih $n(S)=300$
$P(A)=\dfrac{n(A)}{n(S)}=\dfrac{15}{300}=\dfrac{1}{20}$

$\therefore$ Pilihan yang sesuai $(C)\ \dfrac{1}{20}$

38. Perhatikan tabel berikut!
Tabel Tinggi Badan Siswa
Tinggi Badan (cm) Frekuensi (f)
$155$ $4$
$156$ $2$
$157$ $15$
$158$ $8$
$159$ $3$
Jumlah $32$
Banyak siswa yang memiliki tinggi badan di atas rata-rata adalah...
$\begin{align}
(A)\ & 26\ \text{siswa} \\
(B)\ & 15\ \text{siswa} \\
(C)\ & 11\ \text{siswa} \\
(D)\ & 6\ \text{siswa}
\end{align}$
Alternatif Pembahasan:

Jika tabel kita lengkapi menjadi mirip berikut ini;

Tabel Tinggi Badan Siswa
Tinggi Badan $(cm)$ Frekuensi $(f)$ $t \times f$
$155$ $4$ $620$
$156$ $2$ $312$
$157$ $15$ $2355$
$158$ $8$ $1264$
$159$ $3$ $477$
Jumlah $32$ $5028$
Rata-tata data di atas yaitu $\bar{x} = \dfrac{5028}{32}= 157,125$, sehingga banyak siswa yang memiliki tinggi badan di atas rata-rata yaitu $8+3=11$.

$\therefore$ Pilihan yang sesuai $(C)\ 11\ \text{siswa}$

39. Data tinggi badan $20$ siswa (dalam cm) sebagai berikut.
$157$, $159$, $159$, $156$, $157$, $157$, $158$, $158$, $158$, $160$, $160$, $161$, $158$, $159$, $159$, $156$, $156$, $157$, $159$, $160$, $160$, $158$, $159$, $160$.
Modus tinggi badan siswa adalah...

$\begin{align}
(A)\ & 157\ cm \\
(B)\ & 158\ cm \\
(C)\ & 159\ cm \\
(D)\ & 160\ cm
\end{align}$
Alternatif Pembahasan:

Modus yaitu nilai yang paling sering uncul atau frekuensi yang paling besar.

Dari data di atas yang paling sering muncul yaitu $159$
$156: 3 \times$; $157: 4 \times$; $158: 5 \times$; $159: 6 \times$; $160: 5 \times$; $161: 1 \times$.

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 159$

40. Sekolah melakukan pendataan terhadap acara paling di senangi siswa setelah pulang sekolah mirip pada diagram berikut;
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)
Jika banyak siswa yang di data $1.800$ anak, banyak siswa yang senang bermain bersama teman adalah...

$\begin{align}
(A)\ & 300\ \text{anak} \\
(B)\ & 350\ \text{anak} \\
(C)\ & 400\ \text{anak} \\
(D)\ & 600\ \text{anak}
\end{align}$
Alternatif Pembahasan:

Dari diagram lingkaran di atas, sudut pusat lingkaran untuk "Bermain Bersama Teman" $360^{\circ}-\left(60^{\circ}+60^{\circ}+70^{\circ}+50^{\circ}+40^{\circ} \right)$ yaitu $80^{\circ}$.

Banyak anak yang senang Bermain Bersama Teman adalah:
$\begin{align}
\dfrac{80^{\circ}}{360^{\circ}} \times 1.800 & = \dfrac{2}{9} \times 1.800 \\
& = \dfrac{2}{9} \times 1.800 \\
& = 400
\end{align}$

$\therefore$ Pilihan yang sesuai yaitu $(C)\ 400\ \text{anak}$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras

Jika tertarik untuk menyimpan catatan calon guru di atas dalam bentuk file (.pdf) silahkan di download pada link berikut ini:
  • Soal UNBK Matematika SMP Tahun 2019 ๐Ÿ‘€ Download
  • Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 ๐Ÿ‘€ Download
Untuk saran yang sifatnya membangun terkait kasus alternatif penyelesaian Soal UNBK Matematika SMP tahun 2019 (*Simulasi UNBK 2020) atau request pembahasan soal, silahkan disampaikan๐Ÿ˜ŠCMIIW.

Jangan Lupa Untuk Berbagi ๐Ÿ™Share is Caring ๐Ÿ‘€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE๐Ÿ˜Š

Video pilihan khusus untuk Anda ๐Ÿ˜Š Cara Pilar (Pintar Bernalar) Perkalian Dua Angka;
Soal dan Pembahasan UNBK Matematika SMP Tahun  40 Soal dan Pembahasan UNBK Matematika SMP Tahun 2019 (*Simulasi UNBK 2020)

Belum ada Komentar untuk "40 Soal Dan Pembahasan Unbk Matematika Smp Tahun 2019 (*Simulasi Unbk 2020)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel